JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPLEX MOMENT MATRICES VIA HALMOS-BRAM AND EMBRY CONDITIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPLEX MOMENT MATRICES VIA HALMOS-BRAM AND EMBRY CONDITIONS
Li, Chunji; Jung, Il-Bong; Park, Sang-Soo;
  PDF(new window)
 Abstract
By considering a bridge between Bram-Halmos and Embry characterizations for the subnormality of cyclic operators, we extend the Curto-Fialkow and Embry truncated complex moment problem, and solve the problem finding the finitely atomic representing measure such that ${\gamma}_{ij}
 Keywords
truncated complex moment problem;cyclic subnormal operator;
 Language
English
 Cited by
1.
ON NONSINGULAR EMBRY QUARTIC MOMENT PROBLEM,;;

대한수학회보, 2007. vol.44. 2, pp.337-350 crossref(new window)
2.
ESTIMATING THE DOMAIN OF ATTRACTION VIA MOMENT MATRICES,;;;;

대한수학회보, 2009. vol.46. 6, pp.1237-1248 crossref(new window)
3.
A Cyclic Subnormal Completion of Complex Data,;;;

Kyungpook mathematical journal, 2014. vol.54. 2, pp.157-163 crossref(new window)
1.
A Cyclic Subnormal Completion of Complex Data, Kyungpook mathematical journal, 2014, 54, 2, 157  crossref(new windwow)
2.
ESTIMATING THE DOMAIN OF ATTRACTION VIA MOMENT MATRICES, Bulletin of the Korean Mathematical Society, 2009, 46, 6, 1237  crossref(new windwow)
 References
1.
R. Curto and L. Fialkow, Solution of the truncated complex moment problems for flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568, x+52pp

2.
R. Curto and L. Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Memoirs Amer. Math. Soc. 136 (1998), no. 648, x+56 pp

3.
R. Curto and L. Fialkow, Solution of the singular quartic moment problem, J. Operator Theory 48 (2002), no. 2, 315-354

4.
M. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta. Sci. Math. (Szeged) 35 (1973), 61-64

5.
I. Jung, E. Ko, C. Li, and S. Park, Embry truncated complex moment problem, Linear Algebra Appl. 375 (2003), 95-114 crossref(new window)

6.
C. Li, The singular Embry quartic moment problem, Hokkaido Math. J. 34 (2005), no. 3, 655-666 crossref(new window)

7.
C. Li and S. Lee, The quartic moment problem, J. Korean Math. Soc. 42 (2005), no. 4, 723-747 crossref(new window)

8.
S. Wolfram, Mathematica, Version 3.0, Wolfram Research Inc., Champaign, IL, 1996