JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GLOBAL SOLUTIONS OF SEMIRELATIVISTIC HARTREE TYPE EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GLOBAL SOLUTIONS OF SEMIRELATIVISTIC HARTREE TYPE EQUATIONS
Cho, Yong-Geun; Ozawa, Tohru;
  PDF(new window)
 Abstract
We consider initial value problems for the semirelativistic Hartree type equations with cubic convolution nonlinearity $F(u)
 Keywords
semirelativistic Hartree type equations;global existence;scattering;Coulomb type potentials;
 Language
English
 Cited by
1.
Small data scattering for semi-relativistic equations with Hartree type nonlinearity, Journal of Differential Equations, 2015, 259, 10, 5510  crossref(new windwow)
2.
The Boson star equation with initial data of low regularity, Nonlinear Analysis: Theory, Methods & Applications, 2014, 97, 125  crossref(new windwow)
3.
Modified Scattering for the Boson Star Equation, Communications in Mathematical Physics, 2014, 332, 3, 1203  crossref(new windwow)
 References
1.
Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal. 38 (2006), no. 4, 1060-1074 crossref(new window)

2.
Y. Cho and T. Ozawa, On radial solutions of semi-relativistic Hartree equations, to appear in Discrete and Continuous Dynamical System Series S

3.
Y. Cho, T. Ozawa, H. Sasaki, and Y. Shim, Remarks on the relativistic Hartree equations, Hokkaido Univ. Preprint Series in Math. #827 (2007)

4.
A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 (2007), no. 4, 500-545 crossref(new window)

5.
J. Frohlich and E. Lenzmann, Mean-field limit of quantum bose gases and nonlinear Hartree equation, Semin. Equ. Deriv. Partielles, Ecole Poly tech., Palaiseau, 2004

6.
J. Frohlich and E. Lenzmann, Blow-up for nonlinear wave equations describing Boson stars, to appear in Comm. Pure Appl. Math., arXiv:math-ph/0511003

7.
E. H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comrn. Math. Phys. 112 (1987), no. 1, 147-174 crossref(new window)

8.
E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, to appear in Mathematical Physics, Analysis and Geometry; arXiv:math.AP /0505456

9.
S. Machihara, K. Nakanishi, and T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Math. Ann. 322 (2002), no. 3, 603-621 crossref(new window)

10.
S. Machihara, K. Nakanishi, and T. Ozawa, Small global solutions and the nonrelaiiuistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana 19 (2003), no. 1, 179-194

11.
T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schriulinqer equations, Calc. Var. Partial Differential Equations 25 (2006), no. 3, 403-408 crossref(new window)