JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPTIMAL LINEAR CODES OVER ℤm
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OPTIMAL LINEAR CODES OVER ℤm
Dougherty, Steven T.; Gulliver, T. Aaron; Park, Young-Ho; Wong, John N.C.;
  PDF(new window)
 Abstract
We examine the main linear coding theory problem and study the structure of optimal linear codes over the ring . We derive bounds on the maximum Hamming weight of these codes. We give bounds on the best linear codes over and of lengths up to 6. We determine the minimum distances of optimal linear codes over for lengths up to 7. Some examples of optimal codes are given.
 Keywords
linear codes;optimal codes;codes over rings;
 Language
English
 Cited by
1.
The number of self-dual codes over $${Z_{p^3}}$$, Designs, Codes and Cryptography, 2009, 50, 3, 291  crossref(new windwow)
2.
The classification of self-dual modular codes, Finite Fields and Their Applications, 2011, 17, 5, 442  crossref(new windwow)
3.
MDS and self-dual codes over rings, Finite Fields and Their Applications, 2012, 18, 6, 1061  crossref(new windwow)
4.
MDS codes over finite principal ideal rings, Designs, Codes and Cryptography, 2009, 50, 1, 77  crossref(new windwow)
 References
1.
T. Abualrub and R. Oehmke, On the generators of $Z_4$ cyclic codes of length $2^e$, IEEE Trans. Inform. Theory 49 (2003), no. 9, 2126-2133 crossref(new window)

2.
J. M. P. Balmaceda, A. L. Rowena, and F. R. Nemenzo, Mass formula for self-dual codes over $Z_{p2}$, Discrete Math. (to appear)

3.
T. Blackford, Cyclic codes over $Z_4$ of oddly even length, Discrete Appl. Math. 128 (2003), no. 1, 27-46 crossref(new window)

4.
A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptogr. 6 (1995), no. 1, 21-35 crossref(new window)

5.
J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Combin, Theory Ser. A 62 (1993), no. 1, 30-45 crossref(new window)

6.
S. T. Dougherty, T. A. Gulliver, and J. N. C. Wong, Self-dual codes over$Z_8\;and\;Z_9$, Des. Codes Cryptogr. 41 (2006), no. 3, 235-249 crossref(new window)

7.
S. T. Dougherty, M. Harada, and P. Sole, Self-dual codes over rings and the Chinese remainder theorem, Hokkaido Math. J. 28 (1999), no. 2, 253-283 crossref(new window)

8.
S. T. Dougherty and S. Ling, Cyclic codes over $Z_4$ of even length, Des. Codes Cryptogr. 39 (2006), no. 2, 127-153 crossref(new window)

9.
S. T. Dougherty, S. Y. Kim, and Y. H. Park, Lifted codes and their weight enumerators, Discrete Math. 305 (2005), no. 1-3, 123-135 crossref(new window)

10.
S. T. Dougherty and Y. H. Park, Codes over the p-adic integers, Des. Codes Cryptogr. 39 (2006), no. 1, 65-80 crossref(new window)

11.
S. T. Dougherty and Y. H. Park, On modular cyclic codes, Finite Fields Appl. 13 (2007), no. 1, 31-57 crossref(new window)

12.
S. T. Dougherty and K. Shiromoto, MDR codes over $Z_k$, IEEE Trans. Inform. Theory 46 (2000), no. 1, 265-269 crossref(new window)

13.
S. T. Dougherty and K. Shiromoto, Maximum distance codes over rings of order 4, IEEE Trans. Inform. Theory 47 (2001), no. 1, 400-404 crossref(new window)

14.
S. T. Dougherty and T. A. Szczepanski, Latin k-hypercubes, submitted

15.
J. Fields, P. Gaborit, J. S. Leon, and V. Pless, All self-dual $Z_4$ codes of length 15 or less are known, IEEE Trans. Inform. Theory 44 (1998), no. 1, 311-322 crossref(new window)

16.
M. Greferath, G. McGuire, and M. O'Sullivan, On Plotkin-optimal codes over finite F'robenius rings, J. Algebra Appl. 5 (2006), no. 6, 799-815 crossref(new window)

17.
T. A. Gulliver and J. N. C. Wong, Classification of Optimal Linear $Z_4$ Rate 1/2 Codes of Length $\leq$ 8, submitted

18.
R. Hill, A First Course in Coding Theory, Oxford Applied Mathematics and Computing Science Series. The Clarendon Press, Oxford University Press, New York, 1986

19.
Y. H. Park, Modular Independence and Generator Matrices for Codes over $Z_m$, submitted crossref(new window)

20.
W. C. Huffman and V. S. Pless, Fundamentals of Error-correcting Codes, Fundamentals of error-correcting codes. Cambridge University Press, Cambridge, 2003

21.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, NorthHolland, Amsterdam, 1977

22.
G. H. Norton and A. Salagean, On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory 46 (2000), no. 3, 1060-1067 crossref(new window)

23.
V. Pless, J. S. Leon, and J. Fields, All $Z_4$ codes of type II and length 16 are known, J. Combin. Theory Ser. A 78 (1997), no. 1,32-50 crossref(new window)

24.
K. Shiromoto and L. Storrne, A Griesmer Bound for Linear Codes over Finite QuasiFrobenius Rings, Discrete Appl, Math. 128 (2003), no. 1,263-274 crossref(new window)

25.
J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555-575 crossref(new window)