JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEIGHTED ESTIMATES FOR ROUGH PARAMETRIC MARCINKIEWICZ INTEGRALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEIGHTED ESTIMATES FOR ROUGH PARAMETRIC MARCINKIEWICZ INTEGRALS
Al-Qassem, Hussain Mohammed;
  PDF(new window)
 Abstract
We establish a weighted norm inequality for a class of rough parametric Marcinkiewicz integral operators . As an application of this inequality, we obtain weighted inequalities for a class of parametric Marcinkiewicz integral operators related to the Littlewood-Paley and the area integral S, respectively.
 Keywords
Marcinkiewicz integral;Littlewood-Paley g-function;Lusin area integral;rough kernel;
 Language
English
 Cited by
 References
1.
A. Benedek, A. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U. S. A. 48 (1962), 356-365 crossref(new window)

2.
J. Chen, D. Fan, and Y. Pan, A note on a Marcinkiewicz integral operator, Math. Nachr. 227 (2001), 33-42 crossref(new window)

3.
R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645 crossref(new window)

4.
Y. Ding, D. Fan and Y. Pan, Weighted boundedness for a class of rough Marcinkiewicz integrals, Indiana Univ. Math. J. 48 (1999), no. 3, 1037-1055

5.
J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541-561 crossref(new window)

6.
J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1993), no. 2, 869-880 crossref(new window)

7.
J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, 116. Notas de Matematica [Mathematical Notes], 104. North-Holland Publishing Co., Amsterdam, 1985

8.
L. Grafakos and A. Stefanov, Lp bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), no. 2, 455-469

9.
L. Hormander, Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960), 93-140 crossref(new window)

10.
D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^p$ spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235-254 crossref(new window)

11.
Ming-Yi Lee and Chin-Cheng Lin, Weighted $L^p$ boundedness of Marcinkiewicz integral, Integral Equations Operator Theory 49 (2004), no. 2, 211-220 crossref(new window)

12.
M. Sakamoto and K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math. 135 (1999), no. 2, 103-142

13.
S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), no. 2, 199-211 crossref(new window)

14.
E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466 crossref(new window)

15.
E. M. Stein, Singular integrals and di$\circledR$erentiability properties of functions, Princeton Math- ematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970

16.
E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte- grals, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993

17.
E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172 crossref(new window)

18.
A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), no. 1, 235-243