ON THREE SPECTRAL REGULARIZATION METHODS FOR A BACKWARD HEAT CONDUCTION PROBLEM

- Journal title : Journal of the Korean Mathematical Society
- Volume 44, Issue 6, 2007, pp.1281-1290
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2007.44.6.1281

Title & Authors

ON THREE SPECTRAL REGULARIZATION METHODS FOR A BACKWARD HEAT CONDUCTION PROBLEM

Xiong, Xiang-Tuan; Fu, Chu-Li; Qian, Zhi;

Xiong, Xiang-Tuan; Fu, Chu-Li; Qian, Zhi;

Abstract

We introduce three spectral regularization methods for solving a backward heat conduction problem (BHCP). For the three spectral regularization methods, we give the stability error estimates with optimal order under an a-priori and an a-posteriori regularization parameter choice rule. Numerical results show that our theoretical results are effective.

Keywords

inverse problems;backward heat conduction;spectral regularization method;error estimate;

Language

English

Cited by

1.

2.

3.

4.

5.

6.

References

1.

K. A. Ames, G. W. Clark, J. F. Epperson, and S. F. Oppenhermer, A comparison of regularizations for an ill-posed problem, Math. Comp. 67 (1998), no. 224, 1451–-1471

2.

L. Elden, F. Berntsson, and T. Reginska, Wavelet and Fourier methods for solving the sideways heat equation, SIAM J. Sci. Comput. 21 (2000), no. 6, 2187–-2205

3.

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, Mathematics and its Applications, 375. Kluwer Academic Publishers Group, Dordrecht, 1996

4.

L. C. Evans, Partial differential equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 1998

5.

6.

T. Hohage, Regularization of exponentially ill-posed problems, Numer. Funct. Anal. Optim. 21 (2000), no. 3-4, 439–-464

7.

M. Jourhmane and N. S. Mera, An iterative algorithm for the backward heat conduction problem based on variable relaxtion factors, Inverse Probl. Sci. Eng. 10 (2002), no. 4, 293–-308

8.

S. M. Kirkup and M. Wadsworth, Solution of inverse diffusion problems by operatorsplitting methods, Applied Mathematical Modelling 26 (2002), no. 10, 1003–-1018

9.

R. Lattes and J. L. Lions, Methode de quasi-reversibilite et applications, Travaux et Recherches Mathematiques, No. 15 Dunod, Paris 1967

10.

P. Mathe and S. Pereverzev, Geometry of ill-posed problems in variable Hilbert Scales, Inverse Problems 19 (2003), 789–-803

11.

N. S. Mera, L. Elliott, D. B. Ingham, and D. Lesnic, An iterative boundary element method for solving the one-dimensional backward heat conduction problem, International Journal of Heat and Mass Transfer 44 (2001), no. 10, 1937-1946

12.

N. S. Mera, The method of fundamental solutions for the backward heat conduction problem, Inverse Probl. Sci. Eng. 13 (2005), no. 1, 65-78

13.

K. Miller, Stabilized quasi-reversibility and other nearly-best-possible methods for nonwell- posed problems, Symposium on Non-Well-Posed Problems and Logarithmic Convexity (Heriot-Watt Univ., Edinburgh, 1972), pp. 161–176. Lecture Notes in Math., Vol. 316, Springer, Berlin, 1973

14.

R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl. 47 (1974), 563-572

15.

U. Tautenhahn, Optimal stable approximations for the sideways heat equation, J. Inverse Ill-Posed Probl. 5 (1997), no. 3, 287-307