JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ANGULAR DISTRIBUTION OF SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ANGULAR DISTRIBUTION OF SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
Wu, Zhaojun; Sun, Daochun;
  PDF(new window)
 Abstract
In this paper, we study the location of zeros and Borel direction for the solutions of linear homogeneous differential equations $$f^{(n)}+A_{n-1}(z)f^{(n-1)}+{\cdots}+A_1(z)f#+A_0(z)f
 Keywords
Borel direction;hyper order;the exponent of convergence of zeros;
 Language
English
 Cited by
1.
RADIAL OSCILLATION OF LINEAR DIFFERENTIAL EQUATION,;

대한수학회보, 2012. vol.49. 5, pp.911-921 crossref(new window)
1.
RADIAL OSCILLATION OF LINEAR DIFFERENTIAL EQUATION, Bulletin of the Korean Mathematical Society, 2012, 49, 5, 911  crossref(new windwow)
 References
1.
B. Belaidi, Estimation of the hyper-order of entire solutions of complex linear ordinary differential equations whose coeffcients are entire functions, Electron. J. Qual. Theory Differ. Equ. 2002 (2002), no. 5, 1-8

2.
C. T. Chuang, On Borel directions of meromorphic functions of infinite order. II, Bull.Hong Kong Math. Soc. 2 (1999), no. 2, 305-323

3.
H. Guo, J. H. Zheng, and T. W. Ng, On a new singular direction of meromorphic functions, Bull. Austral. Math. Soc. 69 (2004), no. 2, 277-287 crossref(new window)

4.
W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964

5.
K. H. Kwon, On the growth of entire functions satisfying second order linear differential equations, Bull. Korean Math. Soc. 33 (1996), no. 3, 487-496

6.
I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter & Co., Berlin, 1993

7.
J. K. Langley, Some oscillation theorems for higher order linear differential equations with entire coeffcients of small growth, Results Math. 20 (1991), no. 1-2, 517-529 crossref(new window)

8.
R. Nevanlinna, A Uber die Eigenschaften meromorpher Funktionen in einem Winkelraum, Acta Soc. Sci. Fenn. 50 (1925), no. 12, 1-45

9.
S. J.Wu, Angular distribution in complex oscillation theory, Sci. China Ser. A 48 (2005), no. 1, 107-114 crossref(new window)

10.
S. J.W, On the location of zeros of solutions of f + A(z)f = 0 where A(z) is entire, Math. Scand. 74 (1994), no. 2, 293-312

11.
C. F. Yi, Angular distribution of solutions of a higher-order differential equation, Acta Math. Sinica (Chin. Ser.) 48 (2005), no. 1, 133-140

12.
L. Yang, Value distribution theory, Translated and revised from the 1982 Chinese origi- nal. Springer-Verlag, Berlin; Science Press, Beijing, 1993

13.
L. Yang and C. C. Yang, Angular distribution of values of f f', Sci. China Ser. A 37 (1994), no. 3, 284-294

14.
J. H. Zheng, On transcendental meromorphic functions with radially distributed values, Sci. China Ser. A 47 (2004), no. 3, 401-416 crossref(new window)