JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A FAMILY OF BALANCED GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A FAMILY OF BALANCED GROUPS
Wang, Moon-Ok;
  PDF(new window)
 Abstract
A family of balanced groups is introduced. We describe some geometric approach to find these groups in terms of the (orientable) closed 3-manifolds and its fundamental groups.
 Keywords
balanced group presentations;3-manifolds;fundamental groups;
 Language
English
 Cited by
1.
Notes on More Fibonacci Groups, Algebra Colloquium, 2008, 15, 04, 699  crossref(new windwow)
 References
1.
A. Cavicchioli, F. Spaggiari, and M.-O.Wang, A topological study of some groups arising from cellular quotients, Algebra Colloquium 13 (2006), no. 2, 349-380

2.
D. J. Collins and H. Zieschang, Combinatorial group theory and fundamental groups, Encyclopaedia Math. Sci. 58, Springer, Berlin, 1993

3.
W. Dunbar, Geometric orbifolds, Rev. Mat. Univ. Complut. Madrid 1 (1998), 67-99

4.
F. Grunewald and U. Hirsch, Link complements arising from arithmetic group actions, Internat. J. Math. 6 (1995), no. 3, 337-370 crossref(new window)

5.
H. Helling, A. C. Kim, and J. L. Mennicke, A geometric study of Fibonacci groups, J. Lie Theory 8 (1998), no. 1, 1-23

6.
H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia, The arithmetic of the figure eight knot orbifolds, ToIopology'90 (Eds, B. Apanasov, W. D. Neumann, A. W. Reid, L. Siebenmann), Ohio State Univ., Math. Research Inst. Publ., Walter de Gruyter, Berlin (1992), 169-183

7.
D. F. Holt and W. Plesken, A combinatorial criterion for a finitely presented group to be infinite, J. London Math. Soc. 64 (1968), 603-613

8.
J. M. Montesinos, Classical tessellations and three-manifolds, Springer-Verlag, Berlin- Heidelberg- New York, 1998

9.
L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Cambridge Philos. Soc. 64 (1968), 603-613

10.
H. Seifert and W. Threlfall, A Textbook of Topology, Pure and Applied Mathematics, 89. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980

11.
J. R. Stallings, On the recursiveness of sets of presentations of 3-manifold group, Fund. Math. 51 (1962/63), 191-194

12.
M.-O. Wang, A family of complexes with group presentations, Algebra Colloquium 13 (2006), to appear