JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG k-DEFORMATION RETRACT AND ITS APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRONG k-DEFORMATION RETRACT AND ITS APPLICATIONS
Han, Sang-Eon;
  PDF(new window)
 Abstract
In this paper, we study a strong k-deformation retract derived from a relative k-homotopy and investigate its properties in relation to both a k-homotopic thinning and the k-fundamental group. Moreover, we show that the k-fundamental group of a wedge product of closed k-curves not k-contractible is a free group by the use of some properties of both a strong k-deformation retract and a digital covering. Finally, we write an algorithm for calculating the k-fundamental group of a dosed k-curve by the use of a k-homotopic thinning.
 Keywords
digital image;digital k-graph;-homeomorphism;-isomorphism;strongly local -isomorphism;k-fundamental group;simple k-curve point;simple k-point;k-thinning algorithm;simply k-connected;k-homotopy equivalence;-homotopy equivalence;k-homotopic thinning;strong k-defprmation retract;digital covering;discrete topology;digital topology;
 Language
English
 Cited by
1.
REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE,;

호남수학학술지, 2007. vol.29. 1, pp.101-118 crossref(new window)
2.
DIGITAL GEOMETRY AND ITS APPLICATIONS,;

호남수학학술지, 2008. vol.30. 2, pp.207-217 crossref(new window)
3.
DIGITAL COVERING THEORY AND ITS APPLICATIONS,;;

호남수학학술지, 2008. vol.30. 4, pp.589-602 crossref(new window)
4.
CONTINUITIES AND HOMEOMORPHISMS IN COMPUTER TOPOLOGY AND THEIR APPLICATIONS,;

대한수학회지, 2008. vol.45. 4, pp.923-952 crossref(new window)
5.
REGULAR COVERING SPACE IN DIGITAL COVERING THEORY AND ITS APPLICATIONS,;

호남수학학술지, 2009. vol.31. 3, pp.279-292 crossref(new window)
6.
REMARK ON GENERALIZED UNIVERSAL COVERING SPACE IN DIGITAL COVERING THEORY,;

호남수학학술지, 2009. vol.31. 3, pp.267-278 crossref(new window)
7.
ON COMPUTER TOPOLOGICAL FUNCTION SPACE,;;

대한수학회지, 2009. vol.46. 4, pp.841-857 crossref(new window)
8.
COMMUTATIVE MONOID OF THE SET OF k-ISOMORPHISM CLASSES OF SIMPLE CLOSED k-SURFACES IN Z3,;

호남수학학술지, 2010. vol.32. 1, pp.141-155 crossref(new window)
9.
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE,;

호남수학학술지, 2010. vol.32. 3, pp.375-387 crossref(new window)
10.
KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS,;

대한수학회지, 2010. vol.47. 5, pp.1031-1054 crossref(new window)
11.
EXTENSION PROBLEM OF SEVERAL CONTINUITIES IN COMPUTER TOPOLOGY,;

대한수학회보, 2010. vol.47. 5, pp.915-932 crossref(new window)
12.
ARRANGEMENT OF ELEMENTS OF LOCALLY FINITE TOPOLOGICAL SPACES UP TO AN ALF-HOMEOMORPHISM,;;

호남수학학술지, 2011. vol.33. 4, pp.617-628 crossref(new window)
13.
CLASSIFICATION OF SPACES IN TERMS OF BOTH A DIGITIZATION AND A MARCUS WYSE TOPOLOGICAL STRUCTURE,;;

호남수학학술지, 2011. vol.33. 4, pp.575-589 crossref(new window)
14.
IDENTIFICATION METHOD FOR DIGITAL SPACES,;

호남수학학술지, 2011. vol.33. 1, pp.51-60 crossref(new window)
15.
AN EQUIVALENT PROPERTY OF A NORMAL ADJACENCY OF A DIGITAL PRODUCT,;

호남수학학술지, 2014. vol.36. 1, pp.199-215 crossref(new window)
16.
REMARKS ON SIMPLY k-CONNECTIVITY AND k-DEFORMATION RETRACT IN DIGITAL TOPOLOGY,;

호남수학학술지, 2014. vol.36. 3, pp.519-530 crossref(new window)
17.
UTILITY OF DIGITAL COVERING THEORY,;;

호남수학학술지, 2014. vol.36. 3, pp.695-706 crossref(new window)
1.
DIGITAL COVERING THEORY AND ITS APPLICATIONS, Honam Mathematical Journal, 2008, 30, 4, 589  crossref(new windwow)
2.
Map Preserving Local Properties of a Digital Image, Acta Applicandae Mathematicae, 2008, 104, 2, 177  crossref(new windwow)
3.
REGULAR COVERING SPACE IN DIGITAL COVERING THEORY AND ITS APPLICATIONS, Honam Mathematical Journal, 2009, 31, 3, 279  crossref(new windwow)
4.
Ultra regular covering space and its automorphism group, International Journal of Applied Mathematics and Computer Science, 2010, 20, 4  crossref(new windwow)
5.
Contractibility and fixed point property: the case of Khalimsky topological spaces, Fixed Point Theory and Applications, 2016, 2016, 1  crossref(new windwow)
6.
REMARKS ON SIMPLY k-CONNECTIVITY AND k-DEFORMATION RETRACT IN DIGITAL TOPOLOGY, Honam Mathematical Journal, 2014, 36, 3, 519  crossref(new windwow)
7.
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE, Honam Mathematical Journal, 2010, 32, 3, 375  crossref(new windwow)
8.
The k-Homotopic Thinning and a Torus-Like Digital Image in Z n, Journal of Mathematical Imaging and Vision, 2008, 31, 1, 1  crossref(new windwow)
9.
Cartesian Product of the Universal Covering Property, Acta Applicandae Mathematicae, 2009, 108, 2, 363  crossref(new windwow)
10.
COMMUTATIVE MONOID OF THE SET OF k-ISOMORPHISM CLASSES OF SIMPLE CLOSED k-SURFACES IN Z3, Honam Mathematical Journal, 2010, 32, 1, 141  crossref(new windwow)
11.
Homotopy equivalence which is suitable for studying Khalimsky nD spaces, Topology and its Applications, 2012, 159, 7, 1705  crossref(new windwow)
12.
UTILITY OF DIGITAL COVERING THEORY, Honam Mathematical Journal, 2014, 36, 3, 695  crossref(new windwow)
13.
ARRANGEMENT OF ELEMENTS OF LOCALLY FINITE TOPOLOGICAL SPACES UP TO AN ALF-HOMEOMORPHISM, Honam Mathematical Journal, 2011, 33, 4, 617  crossref(new windwow)
14.
CLASSIFICATION OF SPACES IN TERMS OF BOTH A DIGITIZATION AND A MARCUS WYSE TOPOLOGICAL STRUCTURE, Honam Mathematical Journal, 2011, 33, 4, 575  crossref(new windwow)
15.
COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT, Honam Mathematical Journal, 2015, 37, 1, 135  crossref(new windwow)
16.
EXTENSION PROBLEM OF SEVERAL CONTINUITIES IN COMPUTER TOPOLOGY, Bulletin of the Korean Mathematical Society, 2010, 47, 5, 915  crossref(new windwow)
17.
REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE, Honam Mathematical Journal, 2007, 29, 1, 101  crossref(new windwow)
18.
AN EQUIVALENT PROPERTY OF A NORMAL ADJACENCY OF A DIGITAL PRODUCT, Honam Mathematical Journal, 2014, 36, 1, 199  crossref(new windwow)
19.
Existence of the Category DTC 2 (K) Equivalent to the Given Category KAC 2, Ukrainian Mathematical Journal, 2016, 67, 8, 1264  crossref(new windwow)
20.
IDENTIFICATION METHOD FOR DIGITAL SPACES, Honam Mathematical Journal, 2011, 33, 1, 51  crossref(new windwow)
21.
Existence Problem of a Generalized Universal Covering Space, Acta Applicandae Mathematicae, 2010, 109, 3, 805  crossref(new windwow)
22.
REMARK ON GENERALIZED UNIVERSAL COVERING SPACE IN DIGITAL COVERING THEORY, Honam Mathematical Journal, 2009, 31, 3, 267  crossref(new windwow)
23.
Multiplicative Property of the Digital Fundamental Group, Acta Applicandae Mathematicae, 2010, 110, 2, 921  crossref(new windwow)
24.
Extension of continuity of maps between axiomatic locally finite spaces, International Journal of Computer Mathematics, 2011, 88, 14, 2889  crossref(new windwow)
25.
KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS, Journal of the Korean Mathematical Society, 2010, 47, 5, 1031  crossref(new windwow)
26.
The Almost Pasting Property of Digital Continuity, Acta Applicandae Mathematicae, 2010, 110, 1, 399  crossref(new windwow)
27.
DIGITAL GEOMETRY AND ITS APPLICATIONS, Honam Mathematical Journal, 2008, 30, 2, 207  crossref(new windwow)
28.
Comparison among digital fundamental groups and its applications, Information Sciences, 2008, 178, 8, 2091  crossref(new windwow)
 References
1.
G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters 15 (1994), no. 10, 1003-1011 crossref(new window)

2.
G. Bertrand and R. Malgouyres, ome topological properties of surfaces in $Z^3$, J. Math. Imaging Vision 11 (1999), no. 3, 207-221 crossref(new window)

3.
L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), no. 1, 51-62 crossref(new window)

4.
A. I. Bykov, L. G. Zerkalov, and M. A. Rodriguez Pineda, Index of point of 3-D digital binary image and algorithm for computing its Euler characteristic, Pattern Recognition 32 (1999), no. 5, 845-50 crossref(new window)

5.
J. Dontchev and H. Maki, Groups of $\theta$ -generalized homeomorphisms and the digital line, Topology Appl. 95 (1999), no. 2, 113–28 crossref(new window)

6.
S. E. Han, Algorithm for discriminating digital images w. r. t. a digital $(k_0, k_1)$- homoeomorphism, J. Appl. Math. Comput. 18 (2005), no. 1-2, 505–12

7.
S. E. Han, Comparison between digital continuity and computer continuity, Honam Math. J. 26 (2004), no. 3, 331-339

8.
S. E. Han, Computer topology and its applications, Honam Math. J. 25 (2003), no. 1, 153-162

9.
S. E. Han, Connected sum of digital closed surfaces, Inform. Sci. 176 (2006), no. 3, 332-348 crossref(new window)

10.
S. E. Han, Digital coverings and their applications, J. Appl. Math. Comput. 18 (2005), no. 1-2, 487-495

11.
S. E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Information Sciences 177 (2007), no. 16, 3314-326 crossref(new window)

12.
S. E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag Berlin, pp.214–25 (2006)

13.
S. E. Han, Equivalent $(k_0, k_1$ -covering and generalized digital lifting, Information Sciences, www.sciencedirect.com (Articles in press), 2007 crossref(new window)

14.
S. E. Han, Erratum to: 'Non-product property of the digital fundamental group' , Inform. Sci. 176 (2006), no. 2, 215-216 crossref(new window)

15.
S. E. Han, Generalized digital $(k_0, k_1$ -homeomorphism, Note Mat. 22 (2003/04), no. 2, 157-166 crossref(new window)

16.
S. E. Han, Minimal digital pseudotorus with k-adjacency, $k\;{\in}$ {6, 18, 26}, Honam Math. J. 26 (2004), no. 2, 237-246

17.
S. E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Inform. Sci. 176 (2006), no. 2, 120-134 crossref(new window)

18.
S. E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171 (2005), no. 1-3, 73-91 crossref(new window)

19.
S. E. Han, On the simplicial complex stemmed from a digital graph, Honam Math. J. 27 (2005), no. 1, 115-129

20.
S. E. Han, Remarks on Digital k-homotopy equivalence, Honam Math. J. 29 (2007), no. 1, 101-118 crossref(new window)

21.
S. E. Han, The k-fundamental group of a closed k-surface, Inform. Sci. 177 (2007), no. 18, 3731-3748 crossref(new window)

22.
F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969

23.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987), 227-234

24.
E. Khalimsky, R. Kopperman, and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36 (1990), no. 1, 1-17 crossref(new window)

25.
T. Y. Kong, A digital fundamental group, Computers and Graphics 13 (1989), no. 2, 159-166 crossref(new window)

26.
T. Y. Kong and A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996

27.
V. Kovalevsky, Finite topology as applied to image analysis, Computer Vision, Graphic, and Image processing 46 (1989), 141-161 crossref(new window)

28.
R. Malgouyres, Homotopy in two-dimensional digital images, Theoret. Comput. Sci. 230 (2000), no. 1-2, 221-233 crossref(new window)

29.
R. Malgouyres and A. Lenoir, Topology preservation within digital surfaces, Graphical Models 62 (2000), no. 2, 71-84 crossref(new window)

30.
W. S. Massey, Algebraic Topology, Springer-Verlag, New York, 1977

31.
A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters 4 (1986), no. 3, 177-184 crossref(new window)