JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HERMITE AND HERMITE-FEJÉR INTERPOLATION OF HIGHER ORDER AND ASSOCIATED PRODUCT INTEGRATION FOR ERDÖS WEIGHTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HERMITE AND HERMITE-FEJÉR INTERPOLATION OF HIGHER ORDER AND ASSOCIATED PRODUCT INTEGRATION FOR ERDÖS WEIGHTS
Jung, Hee-Sun;
  PDF(new window)
 Abstract
Using the results on the coefficients of Hermite-Fejr interpolations in [5], we investigate convergence of Hermite and Hermite- interpolation of order m, m
 Keywords
Hermite and Hermite- interpolations;product integration rules weights;
 Language
English
 Cited by
1.
On the dense divergence of the product quadrature formulas of interpolatory type, Journal of Mathematical Analysis and Applications, 2016, 433, 2, 1409  crossref(new windwow)
 References
1.
S. B. Damelin and D. S. Lubinsky, Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Erdos weights I, Can. J. Math. 48 (1996), no. 4, 710-736 crossref(new window)

2.
Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, 9, Springer-Verlag, Berlin, 1987

3.
G. Freud, Orthogonal polynomials, Pergamon Press, Oxford, 1971

4.
H. S. Jung, $L_{\infty}$ convergence of interpolation and Associated Product integration for exponential weights, J. Approx. Theory 120 (2003), no. 2, 217-241 crossref(new window)

5.
H. S. Jung, On coefficients of Hermite-Fejer interpolations, Arch. Inequal. Appl. 1 (2003), no. 1, 91-109

6.
A. L. Levin, D. S. Lubinsky, and T. Z. Mthembu, Christoffel functions and orthogonal polynomials for Erdos weights on ($-{\infty},{\infty}$), Rend. Mat. Appl. 14 (1994), no. 7, 199-289

7.
D. S. Lubinsky, The weighted $L_{p}$-norms of orthogonal polynomials for Erdos weights, Comput. Math. Appl. 33 (1997), 151-163 crossref(new window)

8.
E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Heidelberg, 1997