JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MAXIMUM SUBSPACES RELATED TO A-CONTRACTIONS AND QUASINORMAL OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MAXIMUM SUBSPACES RELATED TO A-CONTRACTIONS AND QUASINORMAL OPERATORS
Suciu, Laurian;
  PDF(new window)
 Abstract
It is shown that if and T are two bounded linear operators on a complex Hilbert space H satisfying the inequality and the condition $AT
 Keywords
A-contraction;A-isometry;A-weighted isometry;quasinormal operator;quasi-isometry;
 Language
English
 Cited by
1.
Partial isometries and the conjecture of C.K. Fong and S.K. Tsui, Journal of Mathematical Analysis and Applications, 2016, 437, 1, 431  crossref(new windwow)
2.
Quasi-isometries associated to A-contractions, Linear Algebra and its Applications, 2014, 459, 430  crossref(new windwow)
3.
Operators intertwining with isometries and Brownian parts of 2-isometries, Linear Algebra and its Applications, 2016, 509, 168  crossref(new windwow)
4.
Quasi-isometries in semi-Hilbertian spaces, Linear Algebra and its Applications, 2009, 430, 8-9, 2474  crossref(new windwow)
5.
Maximum A-isometric part of an A-contraction and applications, Israel Journal of Mathematics, 2009, 174, 1, 419  crossref(new windwow)
6.
Asymptotic behaviours and generalized Toeplitz operators, Journal of Mathematical Analysis and Applications, 2009, 349, 1, 280  crossref(new windwow)
 References
1.
G. Cassier, Generalized Toeplitz operators, restrictions to invariant subspaces and similarity problems, J. Operator Theory 53 (2005), no. 1, 49-89

2.
G. Cassier, H. Mahzouli, and E. H. Zerouali, Generalized Toeplitz operators and cyclic vectors, Recent advances in operator theory, operator algebras, and their applications, 103-122, Oper. Theory Adv. Appl. 153, Birkhauser, Basel, 2005 crossref(new window)

3.
G. Corach, A. Maestripieri, and D. Stojanoff, Generalized Schur complements and oblique projections, Linear Algebra Appl. 341 (2002), 259-272 crossref(new window)

4.
C. Foias and A. E. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Advances and Applications, 44. Birkhauser Verlag, Basel, 1990

5.
T. Okayasu and Y. Ueta, Canonical decomposition of tuples of operators caused by systems of operator inequalities, Sci. Math. Jpn. 59 (2004), no. 3, 625-629

6.
S. M. Patel, A note on quasi-isometries, Glas. Mat. Ser. III 35(55) (2000), no. 2, 307-312

7.
F. Riesz and B. Sz.-Nagy, Lecons d'analyse fonctionnelle, Academie des Sciences de Hongrie Gauthier-Villars, Editeur-Imprimeur-Libraire, Paris; Akademiai Kiado, Budapest 1965

8.
L. Suciu, Sur les contractions quasi-normales, Proc. Nat. Conf. on Mathematical Analysis and Applications, Timi¸soara, 12-13 Dec. 2000, Mirton Publishers ISBN: 973-661- 707-6, (2000), 395-403

9.
L. Suciu, Orthogonal decompositions induced by generalized contractions, Acta Sci. Math. (Szeged) 70 (2004), no. 3-4, 751-765

10.
L. Suciu, Ergodic properties for regular A-contractions, Integral Equations Operator Theory 56 (2006), no. 2, 285-299 crossref(new window)

11.
L. Suciu, Some invariant subspaces for A-contractions and applications, Extracta Math. 21 (2006), no. 3, 221-247

12.
L. Suciu, Maximum A-isometric part of an A-contraction and applications, West University of Timisoara, preprint (2006), 1-23, to appear in Israel Journal of Mathematics