JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE GAMMA AND POLYGAMMA FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE GAMMA AND POLYGAMMA FUNCTIONS
Li, Ai-Jun; Chen, Chao-Ping;
  PDF(new window)
 Abstract
In this paper, some logarithmically completely monotonic, strongly completely monotonic and completely monotonic functions related to the gamma, digamma and polygamma functions are established. Several inequalities, whose bounds are best possible, are obtained.
 Keywords
logarithmically completely monotonic;completely monotonic;strongly completely monotonic;Laplace transforms;
 Language
English
 Cited by
1.
SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE GAMMA AND POLYGAMMA FUNCTIONS,;;

대한수학회지, 2008. vol.45. 1, pp.273-287 crossref(new window)
2.
FOUR LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING GAMMA FUNCTION,;;;;

대한수학회지, 2008. vol.45. 2, pp.559-573 crossref(new window)
3.
SOME LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS RELATED TO THE GAMMA FUNCTION,;;

대한수학회지, 2010. vol.47. 6, pp.1283-1297 crossref(new window)
1.
Bounds for the Ratio of Two Gamma Functions, Journal of Inequalities and Applications, 2010, 2010, 1  crossref(new windwow)
2.
Some inequalities and monotonicity properties associated with the gamma and psi functions, Applied Mathematics and Computation, 2012, 218, 17, 8217  crossref(new windwow)
3.
A Class of Logarithmically Completely Monotonic Functions Associated with a Gamma Function, Journal of Inequalities and Applications, 2010, 2010, 1, 392431  crossref(new windwow)
4.
Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic, Journal of Inequalities and Applications, 2011, 2011, 1, 36  crossref(new windwow)
5.
Logarithmically Complete Monotonicity Properties Relating to the Gamma Function, Abstract and Applied Analysis, 2011, 2011, 1  crossref(new windwow)
 References
1.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, with corrections, Washington, 1965

2.
H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373-389 crossref(new window)

3.
H. Alzer, Inequalities for the volume of the unit ball in Rn, J. Math. Anal. Appl. 252 (2000), no. 1, 353-363 crossref(new window)

4.
H. Alzer, A power mean inequality for the gamma function, Monatsh. Math. 131 (2000), no. 3, 179-188 crossref(new window)

5.
H. Alzer, Mean-value inequalities for the polygamma functions, Aequationes Math. 61 (2001), no. 1-2, 151-161 crossref(new window)

6.
H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), no. 2, 181-221 crossref(new window)

7.
H. Alzer and C. Berg, Some classes of completely monotonic functions. II., Ramanujan J. 11 (2006), no. 2, 225-248 crossref(new window)

8.
H. Alzer and C. Berg, Some classes of completely monotonic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 445-460

9.
H. Alzer and J. Wells, Inequalities for the polygamma functions, SIAM J. Math. Anal. 29 (1998), no. 6, 1459-1466 crossref(new window)

10.
G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1713-1723 crossref(new window)

11.
G. D. Anderson and S.-L. Qiu, A monotoneity property of the gamma function, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3355-3362 crossref(new window)

12.
K. Ball, Completely monotonic rational functions and Hall's marriage theorem, J. Combin. Theory Ser. B 61 (1994), no. 1, 118-124 crossref(new window)

13.
C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), no. 4, 433-439 crossref(new window)

14.
C. Berg and H. L. Pedersen, A completely monotone function related to the gamma function, J. Comput. Appl. Math. 133 (2001), no. 1-2, 219-230 crossref(new window)

15.
C. Berg and H. L. Pedersen, Pick functions related to the gamma function, Rocky Mountain J. Math. 32 (2002), no. 2, 507-525 crossref(new window)

16.
K. H. Borgwardt, The simplex method, A probabilistic analysis. Algorithms and Combinatorics: Study and Research Texts, 1. Springer-Verlag, Berlin, 1987

17.
A. M. Bruckner and E. Ostrow, Some function classes related to the class of convex functions, Pacific J. Math. 12 (1962), 1203-1215 crossref(new window)

18.
J. Bustoz and M. E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), no. 176, 659-667 crossref(new window)

19.
Chao-Ping Chen, Complete monotonicity properties for a ratio of gamma functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16 (2005), 26-28

20.
P. J. Davis, Leonhard Euler's integral: A historical profile of the gamma function, Amer. Math. Monthly 66 (1959), 849-869 crossref(new window)

21.
B. J. English and G. Rousseau, Bounds for certain harmonic sums, J. Math. Anal. Appl. 206 (1997), no. 2, 428-441 crossref(new window)

22.
A. Z. Grinshpan and M. E. H. Ismail, Completely monotonic functions involving the gamma and q-gamma functions, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1153-1160 crossref(new window)

23.
R. A. Horn, On infinitely divisible matrices, kernels, and functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 219-230 crossref(new window)

24.
D. Kershaw, Some extensions of W. Gautschi's inequalities for the gamma function, Math. Comp. 41 (1983), no. 164, 607-611 crossref(new window)

25.
C. H. Kimberling, A probabilistic interpretation of complete monotonicity, Aequationes Math. 10 (1974), 152-164 crossref(new window)

26.
W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52 Springer-Verlag New York, Inc., New York 1966

27.
M. Merkle, On log-convexity of a ratio of gamma functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 8 (1997), 114-119

28.
M. Merkle, Convexity, Schur-convexity and bounds for the gamma function involving the digamma function, Rocky Mountain J. Math. 28 (1998), no. 3, 1053-1066 crossref(new window)

29.
M. Merkle, Gurland's ratio for the gamma function, Comput. Math. Appl. 49 (2005), no. 2-3, 389-406 crossref(new window)

30.
H. Minc and L. Sathre, Some inequalities involving $(r!)^{1/r}$, Proc. Edinburgh Math. Soc. (2) 14 (1964/1965), 41-46

31.
F. Qi and Ch.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), no. 2, 603-607 crossref(new window)

32.
F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), 63-72, Art. 8

33.
F. Qi, B.-N. Guo, and Ch.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), no. 1, 81-88 crossref(new window)

34.
S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp. 74 (2005), no. 250, 723-742 crossref(new window)

35.
S. Y. Trimble, J. Wells, and F. T. Wright, Superadditive functions and a statistical application, SIAM J. Math. Anal. 20 (1989), no. 5, 1255-1259 crossref(new window)

36.
Zh.-X. Wang and D.-R. Guo, T`eshu Hanshu Gailun (Introduction to Special Function), The Series of Advanced Physics of Peking University, Peking University Press, Beijing, China, 2000

37.
D. V. Widder, The Laplace Transform, Princeton Mathematical Series, v. 6. Princeton University Press, Princeton, N. J., 1941