JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEAK LAWS OF LARGE NUMBERS FOR ARRAYS UNDER A CONDITION OF UNIFORM INTEGRABILITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEAK LAWS OF LARGE NUMBERS FOR ARRAYS UNDER A CONDITION OF UNIFORM INTEGRABILITY
Sung, Soo-Hak; Lisawadi, Supranee; Volodin, Andrei;
  PDF(new window)
 Abstract
For an array of dependent random variables satisfying a new notion of uniform integrability, weak laws of large numbers are obtained. Our results extend and sharpen the known results in the literature.
 Keywords
uniform integrability;weak law of large numbers;r-mean convergence;convergence in probability;martingale difference sequence;negative association;negative dependence;
 Language
English
 Cited by
1.
A STRONG LIMIT THEOREM FOR SEQUENCES OF BLOCKWISE AND PAIRWISE m-DEPENDENT RANDOM VARIABLES,;;

대한수학회보, 2011. vol.48. 2, pp.343-351 crossref(new window)
2.
CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES,;;

대한수학회지, 2012. vol.49. 6, pp.1097-1110 crossref(new window)
3.
EXTRAPOLATED EXPANDED MIXED FINITE ELEMENT APPROXIMATIONS OF SEMILINEAR SOBOLEV EQUATIONS,;;;

East Asian mathematical journal , 2014. vol.30. 3, pp.327-334 crossref(new window)
4.
OPTIMAL L2-ERROR ESTIMATES FOR EXPANDED MIXED FINITE ELEMENT METHODS OF SEMILINEAR SOBOLEV EQUATIONS,;;;

대한수학회지, 2014. vol.51. 3, pp.545-565 crossref(new window)
1.
A STRONG LIMIT THEOREM FOR SEQUENCES OF BLOCKWISE AND PAIRWISE m-DEPENDENT RANDOM VARIABLES, Bulletin of the Korean Mathematical Society, 2011, 48, 2, 343  crossref(new windwow)
2.
Some limit theorems for arrays of rowwise pairwise NQD random variables, Теория вероятностей и ее применения, 2014, 59, 2, 400  crossref(new windwow)
3.
Complete moment convergence of weighted sums for arrays of negatively dependent random variables and its applications, Communications in Statistics - Theory and Methods, 2016, 45, 11, 3185  crossref(new windwow)
4.
Convergence of weighted sums for sequences of pairwise NQD random variables, Communications in Statistics - Theory and Methods, 2016, 45, 20, 5977  crossref(new windwow)
5.
Convergence in -mean of weighted sums of NQD random variables, Applied Mathematics Letters, 2013, 26, 1, 18  crossref(new windwow)
6.
Conditional mean convergence theorems of conditionally dependent random variables under conditions of integrability, Frontiers of Mathematics in China, 2015, 10, 3, 681  crossref(new windwow)
7.
Weak laws of large numbers for arrays of dependent random variables, Stochastics An International Journal of Probability and Stochastic Processes, 2014, 86, 5, 759  crossref(new windwow)
8.
Some mean convergence and complete convergence theorems for sequences of m-linearly negative quadrant dependent random variables, Applications of Mathematics, 2013, 58, 5, 511  crossref(new windwow)
9.
Mean convergence theorems for weighted sums of random variables under a condition of weighted integrability, Journal of Inequalities and Applications, 2013, 2013, 1, 558  crossref(new windwow)
10.
On convergence for sequences of pairwise negatively quadrant dependent random variables, Applications of Mathematics, 2014, 59, 4, 473  crossref(new windwow)
11.
Some Limit Theorems for Arrays of Rowwise Pairwise Negatively Quadratic Dependent Random Variables, Theory of Probability & Its Applications, 2015, 59, 2, 344  crossref(new windwow)
12.
Mean convergence theorems and weak laws of large numbers for weighted sums of dependent random variables, Journal of Mathematical Analysis and Applications, 2011, 377, 2, 613  crossref(new windwow)
13.
CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES, Journal of the Korean Mathematical Society, 2012, 49, 6, 1097  crossref(new windwow)
14.
L1-Convergence for Weighted Sums of Some Dependent Random Variables, Stochastic Analysis and Applications, 2010, 28, 6, 928  crossref(new windwow)
15.
Limiting behaviour for arrays of row-wise END random variables under conditions ofh-integrability, Stochastics An International Journal of Probability and Stochastic Processes, 2015, 87, 3, 409  crossref(new windwow)
16.
Strong convergence for weighted sums of arrays of rowwise pairwise NQD random variables, Collectanea Mathematica, 2014, 65, 1, 119  crossref(new windwow)
17.
Strong laws of large numbers and mean convergence theorems for randomly weighted sums of arrays under a condition of integrability, Statistical Methodology, 2012, 9, 5, 528  crossref(new windwow)
 References
1.
T. K. Chandra, Uniform integrability in the Cesaro sense and the weak law of large numbers, Sankhya Ser. A 51 (1989), no. 3, 309-317

2.
T. K. Chandra and A. Goswami, Cesaro ${\alpha}$-integrability and laws of large numbers I, J. Theoret. Probab. 16 (2003), no. 3, 655-669 crossref(new window)

3.
N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 55 (1981), no. 1, 119-122 crossref(new window)

4.
A. Gut, The weak law of large numbers for arrays, Statist. Probab. Lett. 14 (1992), no. 1, 49-52 crossref(new window)

5.
D. H. Hong and K. S. Oh, On the weak law of large numbers for arrays, Statist. Probab. Lett. 22 (1995), no. 1, 55-57 crossref(new window)

6.
K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295 crossref(new window)

7.
V. Kruglov, Growth of sums of pairwise-independent random variables with infinite means, Teor. Veroyatn. Primen. 51 (2006), no. 2, 382-385 crossref(new window)

8.
D. Landers and L. Rogge, Laws of large numbers for pairwise independent uniformly integrable random variables, Math. Nachr. 130 (1987), 189-192 crossref(new window)

9.
D. Li, A. Rosalsky, and A. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 281-305

10.
M. Ordonez Cabrera, Convergence of weighted sums of random variables and uniform integrability concerning the weights, Collect. Math. 45 (1994), no. 2, 121-132

11.
M. Ordonez Cabrera and A. Volodin, Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability, J. Math. Anal. Appl. 305 (2005), no. 2, 644-658 crossref(new window)

12.
Q. M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theoret. Probab. 13 (2000), no. 2, 343-356 crossref(new window)

13.
S. H. Sung, Weak law of large numbers for arrays of random variables, Statist. Probab. Lett. 42 (1999), no. 3, 293-298 crossref(new window)

14.
S. H. Sung, T. C. Hu, and A. Volodin, On the weak laws for arrays of random variables, Statist. Probab. Lett. 72 (2005), no. 4, 291-298 crossref(new window)