JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LORENTZIAN SURFACES WITH CONSTANT CURVATURES AND TRANSFORMATIONS IN THE 3-DIMENSIONAL LORENTZIAN SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LORENTZIAN SURFACES WITH CONSTANT CURVATURES AND TRANSFORMATIONS IN THE 3-DIMENSIONAL LORENTZIAN SPACE
Park, Joon-Sang;
  PDF(new window)
 Abstract
We study Lorentzian surfaces with the constant Gaussian curvatures or the constant mean curvatures in the 3-dimensional Lorentzian space and their transformations. Such surfaces are associated to the Lorentzian Grassmannian systems and some transformations on such surfaces are given by dressing actions on those systems.
 Keywords
spacelike surface;timelike surface;Gaussian curvature;mean curvature;(elliptic) sine-Gordon;(hyperbolic) sinh-Gordon;Grassmannian system;
 Language
English
 Cited by
1.
RIBAUCOUR TRANSFORMATIONS ON LORENTZIAN SPACE FORMS IN LORENTZIAN SPACE FORMS,;

대한수학회지, 2008. vol.45. 6, pp.1577-1590 crossref(new window)
 References
1.
M. Bruck, X. Du, J. Park, and C. L. Terng, The submanifold geometries associated to Grassmannian systems, Mem. Amer. Math. Soc. 155 (2002), no. 735

2.
S. S. Chern, Geometrical interpretations of the sinh-Gordon equation, Ann. Polon. Math. 39 (1980), 74-80

3.
M. Dajczer and R. Tojeiro, Commuting Codazzi tensors and the Ribaucour transformation for submanifolds, Results Math. 44 (2003), no. 3-4, 258-278 crossref(new window)

4.
L. P. Eisenhart, A Treatise on the Differential Geometry of curves and Surfaces, Dover, 1960

5.
J. Inoguch, Timelike Surfaces of constant mean curvature in Minkowski 3-pace, Tokyo J. Math. 21 (1998), no. 1, 141-152 crossref(new window)

6.
J. Inoguch, Darboux transformations on timelike constant mean curvature surfaces, J. Geom. Phys. 32 (1999), no. 1, 57-78 crossref(new window)

7.
B. O'Neill, Semi-Riemannian Geometry, Academic Press, 1983

8.
B. Palmer, Backlund transformation for surfaces in Minkowski space, J. Math. Phys. 31 (1990), no. 12, 2872-2875 crossref(new window)

9.
C. L. Terng, Soliton equations and differential geometry, J. Differential Geom. 45 (1997), no. 2, 407-445

10.
C. Tian, Backlund transformations on surfaces with K = -1 in $R^{2,1}$, J. Geom. Phys. 22 (1997), no. 3, 212-218 crossref(new window)

11.
T. Weinstein, An Introduction to Lorentz surfaces, de Gruyter Expositions in Math., 22, Walter de Gruyter, Berlin, 1996