JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HOLOMORPHIC FUNCTIONS ON THE MIXED NORM SPACES ON THE POLYDISC
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HOLOMORPHIC FUNCTIONS ON THE MIXED NORM SPACES ON THE POLYDISC
Stevic, Stevo;
  PDF(new window)
 Abstract
We generalize several integral inequalities for analytic functions on the open unit polydisc <. It is shown that if a holomorphic function on belongs to the mixed norm space , where ,j=1,...,n, are admissible weights, then all weighted derivations of order (with positive orders of derivations) belong to a related mixed norm space. The converse of the result is proved when, p, q and when the order is equal to one. The equivalence of these conditions is given for all p, q if >, j=1,...,n (the classical weights.) The main results here improve our results in Z. Anal. Anwendungen 23 (3) (2004), no. 3, 577-587 and Z. Anal. Anwendungen 23 (2004), no. 4, 775-782.
 Keywords
holomorphic function;mixed norm space;polydisc;weighted derivations;admissible weight;
 Language
English
 Cited by
1.
Norms of some operators on the Bergman and the Hardy space in the unit polydisk and the unit ball, Applied Mathematics and Computation, 2009, 215, 6, 2199  crossref(new windwow)
2.
Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball, Applied Mathematics and Computation, 2009, 212, 2, 499  crossref(new windwow)
3.
Weighted Integrals and Bloch Spaces of n-Harmonic Functions on the Polydisc, Potential Analysis, 2008, 29, 1, 49  crossref(new windwow)
4.
On a New Integral-Type Operator from the Weighted Bergman Space to the Bloch-Type Space on the Unit Ball, Discrete Dynamics in Nature and Society, 2008, 2008, 1  crossref(new windwow)
5.
Mixed norm variable exponent Bergman space on the unit disc, Complex Variables and Elliptic Equations, 2016, 61, 8, 1090  crossref(new windwow)
6.
On the fractional integro-differentiation operator in ℝ n, Journal of Contemporary Mathematical Analysis, 2015, 50, 5, 236  crossref(new windwow)
7.
The Numerical Range of Toeplitz Operator on the Polydisk, Abstract and Applied Analysis, 2009, 2009, 1  crossref(new windwow)
 References
1.
G. Benke and D. C. Chang, A note on weighted Bergman spaces and the Cesaro operator, Nagoya Math. J. 159 (2000), 25-43

2.
J. S. Choa, Some properties of analytic functions on the unit ball with Hadamard gaps, Complex Variables 29 (1996), 277-285 crossref(new window)

3.
B. R. Choe, H. Koo, and H. Yi, Derivatives of harmonic Bergman and Bloch functions on the unit ball, J. Math. Anal. Appl. 260 (2001), 100-123 crossref(new window)

4.
P. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970

5.
T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765 crossref(new window)

6.
G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439 crossref(new window)

7.
T. L. Kriete and B. D. MacCluer, Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J. 41 (1992), 755-788 crossref(new window)

8.
P. Lin and R. Rochberg, Hankel operators on the weighted Bergman spaces with exponential weights, Integral Equations Operator Theory 21 (1995), 460-483 crossref(new window)

9.
M. Nowak, Bloch space on the unit ball of $C^n$, Ann. Acad. Sci. Fenn. Math. 23 (1998), 461-473

10.
C. Ouyang, W. Yang, and R. Zhao, Characterizations of Bergman spaces and Bloch space in the unit ball of $C^n$, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4301-4313 crossref(new window)

11.
M. Pavlovic, Decompositions of $L^p$ and Hardy spaces of polyharmonic functions, J. Math. Anal. Appl. 216 (1997), 499-509 crossref(new window)

12.
G. Ren and U. Kahler, Hardy-Littlewood inequalities and $Q_p$-spaces, Z. Anal. Anwendungen 24 (2005), no. 2, 375-388

13.
W. Rudin, Function theory in the unit ball of $C^n$, Springer-Verlag, Berlin, Heidelberg, New York, 1980

14.
J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $C^n$, Trans. Amer. Math. Soc. 328 (1991), no. 2, 619-637 crossref(new window)

15.
A. Siskakis, Weighted integrals of analytic functions, Acta Sci. Math. 66 (2000), 651-664

16.
S. Stevic, A note on weighted integrals of analytic functions, Bull. Greek Math. Soc. 46 (2002), 3-9

17.
S. Stevic, Weighted integrals of harmonic functions, Studia Sci. Math. Hung. 39 (2002), no. 1-2, 87-96

18.
S. Stevic, Weighted integrals of holomorphic functions on the polydisk, Z. Anal. Anwendungen 23 (2004), no. 3, 577-587

19.
S. Stevic, Weighted integrals of holomorphic functions on the unit polydisk II, Z. Anal. Anwendungen 23 (2004), no. 4, 775-782

20.
S. Stevic, Weighted integrals of holomorphic functions in the unit polydisk, J. Inequal. Appl. 2005 (2005), no. 5, 583-590 crossref(new window)

21.
K. J. Wirths and J. Xiao, An image-area inequality for some planar holomorphic maps, Results Math. 38 (2000), no. 1-2, 172-179 crossref(new window)

22.
K. Zhu, The Bergman spaces, the Bloch spaces, and Gleason's problem, Trans. Amer. Math. Soc. 309 (1988), no. 1, 253-268 crossref(new window)

23.
K. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278 crossref(new window)

24.
K. Zhu, Operator theory in function spaces, Pure and Applied Mathematics 139, Marcel Dekker, Inc., New York-Basel, 1990