JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INTEGRAL REPRESENTATIONS IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING BOUNDARY INTEGRAL OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INTEGRAL REPRESENTATIONS IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING BOUNDARY INTEGRAL OPERATORS
Kwon, Ki-Woon;
  PDF(new window)
 Abstract
Electrical impedance tomography (EIT) problem with anisotropic anomalous region is formulated in a few different ways using boundary integral operators. The Frechet derivative of Neumann-to-Dirichlet map is computed also by using boundary integral operators and the boundary of the anomalous region is approximated by trigonometric expansion with Lagrangian basis. The numerical reconstruction is done in case that the conductivity of the anomalous region is isotropic.
 Keywords
electrical impedance tomography;boundary integral operator;Neumann-to-Dirichlet map;
 Language
English
 Cited by
1.
The method of fundamental solutions for the inverse conductivity problem, Inverse Problems in Science and Engineering, 2010, 18, 4, 567  crossref(new windwow)
 References
1.
D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E. Sci. Instrum. 17 (1984), 723-733 crossref(new window)

2.
M. Cheney, D. Isaacson, J. Newell, J. Goble, and S. Simske, Noser: An algorithm for solving the inverse conductivity problem, Internat. J. Imaging Systems and Technology 2 (1990), 66-75 crossref(new window)

3.
M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), no. 1, 85-101 crossref(new window)

4.
R. R Coifman, A. McIntosh, and Y. Meyer, L'integrale de Cauchy definit un operateur borne sur $L^2$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361-387 crossref(new window)

5.
D. Colton, R. Kress, and P. Monk, Inverse scattering from an orthotropic medium, J. Comput. Appl. Math. 81 (1997), no. 2, 269-298 crossref(new window)

6.
D. C. Dobson, Convergence of a reconstruction method for the inverse conductivity problem, SIAM J. Appl. Math. 52 (1992), no. 2, 442-458 crossref(new window)

7.
K. Erhard and R. Potthast, The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering, Inverse Problems 19 (2003), no. 5, 1139-1157 crossref(new window)

8.
L. Escauriaza and J. K. Seo, Regularity properties of solutions to transmission problems, Trans. Amer. Math. Soc. 338 (1993), no. 1, 405-430 crossref(new window)

9.
G. B. Folland, Introduction to partial differential equations, Second edition. Princeton University Press, Princeton, NJ, 1995

10.
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983

11.
D. G. Gisser, D. Isaacson, and J. C. Newell, Current topics in impedance imaging, Clin. Phys. Phyiol. Meas. 8 (1987), 39-46

12.
F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems 14 (1998), no. 1, 67-82 crossref(new window)

13.
B. Hofmann, Approximation of the inverse electrical impedance tomography problem by an inverse transmission problem, Inverse Problems 14 (1998), no. 5, 1171-1187 crossref(new window)

14.
B. Hofmann, A denseness theorem with an application to a two-dimensional inverse potential refraction problem, SIAM J. Math. Anal. 30 (1999), no. 4, 896-911 crossref(new window)

15.
T. Hohage and C. Schormann, A Newton-type method for a transmission problem in inverse scattering, Inverse Problems 14 (1998), no. 5, 1207-1227 crossref(new window)

16.
M. Ikehata, Identification of the curve of discontinuity of the determinant of the anisotropic conductivity, J. Inverse Ill-Posed Probl. 8 (2000), no. 3, 273-285

17.
V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math. 41 (1988), no. 7, 865-877 crossref(new window)

18.
H. Kang and J. K. Seo, The layer potential technique for the inverse conductivity problem, Inverse Problems 12 (1996), no. 3, 267-278 crossref(new window)

19.
H. Kang, J. K. Seo, and D. Sheen, Numerical identification of discontinuous conductivity coefficients, Inverse Problems 13 (1997), no. 1, 113-123 crossref(new window)

20.
H. Ki and D. Sheen, Numerical inversion of discontinuous conductivities, Inverse Problems 16 (2000), no. 1, 33-47 crossref(new window)

21.
R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, Inverse problems (New York, 1983), 113-123, SIAM-AMS Proc., 14, Amer. Math. Soc., Providence, RI, 1984

22.
R. V. Kohn and A. McKenney, Numerical implementation of a variational method for electrical impedance tomography, Inverse Problems 6 (1990), no. 3, 389-414 crossref(new window)

23.
R. Kress, Linear integral equations, Second edition. Applied Mathematical Sciences, 82. Springer-Verlag, New York, 1999

24.
R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Special section on imaging. Inverse Problems 19 (2003), no. 6, S91-S104 crossref(new window)

25.
K. Kwon, Identification of anisotropic anomalous region in inverse problems, Inverse Problems 20 (2004), no. 4, 1117-1136 crossref(new window)

26.
K. Kwon and D. Sheen, Anisotropic inverse conductivity and scattering problems, Inverse Problems 18 (2002), no. 3, 745-756 crossref(new window)

27.
M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichletto-Neumann map, Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), no. 5, 771-787

28.
J. M. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989), no. 8, 1097-1112 crossref(new window)

29.
W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems 13 (1997), no. 1, 125-134 crossref(new window)

30.
A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), no. 1, 71-96 crossref(new window)

31.
R. Potthast, Frechet differentiability of boundary integral operators in inverse acoustic scattering, Inverse Problems 10 (1994), no. 2, 431-447 crossref(new window)

32.
F. Santosa and M. Vogelius, A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50 (1990), no. 1, 216-243 crossref(new window)

33.
E. Somersalo, M. Cheney, D. Isaacson, and E. L. Isaacson, Layer stripping: a direct numerical method for impedance imaging, Inverse Problems 7 (1991), no. 6, 899-926 crossref(new window)

34.
Z. Sun and G. Uhlmann, Anisotropic inverse problems in two dimensions, Inverse Problems 19 (2003), no. 5, 1001-1010 crossref(new window)

35.
J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 43 (1990), no. 2, 201-232 crossref(new window)

36.
J. Sylvester, A convergent layer stripping algorithm for the radially symmetric impedance tomography problem, Comm. Partial Differential Equations 17 (1992), no. 11-12, 1955-1994 crossref(new window)

37.
G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572-611 crossref(new window)

38.
E. J.Woo, J.Webster, and W. J. Tompkins, The improved Newton-Raphson method and its parallel implementation for static impedance imaging, In Proc. IEEE-EMBS Conf. Part 1, volume 5, pages 102-103, 1990

39.
T. J. Yorkey, J. G. Webster, and W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Engr. 34 (1987), 843-852 crossref(new window)