EXISTENCE OF PERIODIC SOLUTIONS OF A HIGHER ORDER DIFFERENCE SYSTEM

- Journal title : Journal of the Korean Mathematical Society
- Volume 45, Issue 2, 2008, pp.405-423
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2008.45.2.405

Title & Authors

EXISTENCE OF PERIODIC SOLUTIONS OF A HIGHER ORDER DIFFERENCE SYSTEM

Hu, Ronghui; Huang, Lihong;

Hu, Ronghui; Huang, Lihong;

Abstract

By using critical point theorem, we study a higher order difference system, and obtain some new sufficient conditions ensuring the existence of periodic solutions for such a system.

Keywords

higher order difference system;periodic solution;critical point;link;

Language

English

Cited by

References

1.

R. P. Agarwal, Difference Equations and Inequalities, Theory, methods, and applications. Monographs and Textbooks in Pure and Applied Mathematics, 155. Marcel Dekker, Inc., New York, 1992

2.

R. P. Agarwal and W. Zhang, Periodic solutions of difference equations with general periodicity, Comput. Math. Appl. 42 (2001), no. 3-5, 719-727

3.

Jingliang Chen and Xianghui Chen, The Particular Matrix, Tsinghua University Press, 2000

4.

S. N. Eladi, An Introduction to Difference Equations, Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1999

5.

S. N. Elaydi and S. Zhang, Stability and periodicity of difference equations with finite delay, Funkcial. Ekvac. 37 (1994), no. 3, 401-413

6.

L. H. Erbe, H. Xia, and J. S. Yu, Global stability of a linear nonautonomous delay difference equation, J. Differ. Equations Appl. 1 (1995), no. 2, 151-161

7.

Z. M. Guo and J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A 46 (2003), no. 4, 506-515

8.

Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc. (2) 68 (2003), no. 2, 419-430

9.

J. K. Hale and J. Mawhin, Coincidence degree and periodic solutions of neutral equations, J. Differential Equations 15 (1974), 295-307

10.

J. L. Kaplan and J. A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl. 48 (1974), 317-324

11.

V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and its Applications, 256. Kluwer Academic Publishers Group, Dordrecht, 1993

12.

H. Matsunaga, T. Hara, and S. Sakata, Global attractivity for a nonlinear difference equation with variable delay, Comput. Math. Appl. 41 (2001), no. 5-6, 543-551

13.

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74. Springer-Verlag, New York, 1989

14.

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986

15.

X. H. Tang and J. S. Yu, Oscillation of nonlinear delay difference equations, J. Math. Anal. Appl. 249 (2000), no. 2, 476-490

16.

K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995

17.

J. S. Yu, Asymptotic stability for a linear difference equation with variable delay, Comput. Math. Appl. 36 (1998), no. 10-12, 203-210

18.

G. Zhang, Critical point Theory and Application, Shanghai Press, 1986

19.

Z. Zhou and Q. Zhang, Uniform stability of nonlinear difference systems, J. Math. Anal. Appl. 225 (1998), no. 2, 486-500

20.

Z. Zhou, Periodic orbits on discrete dynamical systems, Comput. Math. Appl. 45 (2003), no. 6-9, 1155-1161