JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHOW STABILITY CRITERION IN TERMS OF LOG CANONICAL THRESHOLD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CHOW STABILITY CRITERION IN TERMS OF LOG CANONICAL THRESHOLD
Lee, Yong-Nam;
  PDF(new window)
 Abstract
In this paper, we provide a criterion for Chow stability in terms of log canonical threshold of the Chow form in the Grassmannian.
 Keywords
Chow stability;log canonical threshold;
 Language
English
 Cited by
1.
Software for multiplier ideals, Journal of Software for Algebra and Geometry, 2015, 7, 1, 1  crossref(new windwow)
2.
Stability and Singularities of Relative Hypersurfaces, International Mathematics Research Notices, 2016, 2016, 4, 1026  crossref(new windwow)
 References
1.
J.-P. Demailly and J. Kollar, Semi-continuity of complex singularity exponents and Kahler-Einstein metrics on Fano orbifolds, Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), no. 4, 525-556

2.
I. Dolgachev, Lectures on Invariant Theory, London Mathematical Society Lecture Note Series, 296. Cambridge University Press, Cambridge, 2003

3.
I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, Resultants, and Multi-dimensional Determinants, Mathematics: Theory & Applications. Birkhauser Boston, Inc., Boston, MA, 1994

4.
P. Hacking, Compact moduli of plane curves, Duke Math. J. 124 (2004), no. 2, 213-257 crossref(new window)

5.
D. Hilbert, Theory of Algebraic Invariants, Translated from the German and with a preface by Reinhard C. Laubenbacher. Edited and with an introduction by Bernd Sturmfels. Cambridge University Press, Cambridge, 1993

6.
D. Hyeon and Y. Lee, Stability of tri-canonical curves of genus two, Math. Ann. 337 (2007), no. 2, 479-488 crossref(new window)

7.
H. Kim and Y. Lee, Log canonical thresholds of semistable plane curves, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 273-280 crossref(new window)

8.
J. Kollar, Singularities of pairs, Algebraic geometry-Santa Cruz 1995, 221-287, Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., 1997

9.
J. Kollar, Polynomials with integral coefficients, equivalent to a given polynomial, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 17-27 crossref(new window)

10.
J. Kollar and S. Mori, Birational Geometry of Algebraic Varieties, With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998

11.
D. Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39-110

12.
D. Mumford and J. Fogarty, Geometric Invariant Theory, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 34. Springer-Verlag, Berlin, 1982

13.
M. Mustata, Singularities of pairs via jet schemes, J. Amer. Math. Soc. 15 (2002), no. 3, 599-615 crossref(new window)

14.
A. N. Varchenko, Newton polyhedra and estimates of oscillatory integrals, Funkcional. Anal. i Prilozen. 10 (1976), no. 3, 13-38