JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX
Lee, Gwang-Yeon; Cho, Seong-Hoon;
  PDF(new window)
 Abstract
In [4], the authors studied the Pascal matrix and the Stirling matrices of the first kind and the second kind via the Fibonacci matrix. In this paper, we consider generalizations of Pascal matrix, Fibonacci matrix and Pell matrix. And, by using Riordan method, we have factorizations of them. We, also, consider some combinatorial identities.
 Keywords
Pascal matrix;Fibonacci matrix;Pell matrix;Riordan matrix;
 Language
English
 Cited by
1.
SOME COMBINATORIAL IDENTITIES VIA 7-MATRICES,;

Proceedings of the Jangjeon Mathematical Society, 2013. vol.16. 1, pp.133-142
1.
TheF-Analogue of Riordan Representation of Pascal Matrices via Fibonomial Coefficients, Journal of Applied Mathematics, 2014, 2014, 1  crossref(new windwow)
2.
The cyclic groups via the Pascal matrices and the generalized Pascal matrices, Linear Algebra and its Applications, 2012, 437, 10, 2538  crossref(new windwow)
 References
1.
R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992), 13-23 crossref(new window)

2.
J. Ercolano, Matrix generators of Pell sequences, Fibonacci Quart. 17 (1979), no. 1, 71-77

3.
A. F. Horadam, Pell identities, Fibonacci Quart. 9 (1971), no. 3, 245-252, 263

4.
G. Y. Lee, J. S. Kim, and S. H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math. 130 (2003), no. 3, 527-534 crossref(new window)

5.
G. Y. Lee, J. S. Kim, and S. G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 40 (2002), no. 3, 203-211

6.
P. Peart and L. Woodson, Triple factorization of some Riordan matrices, Fibonacci Quart. 31 (1993), no. 2, 121-128

7.
L. W. Shapiro, S. Getu, W. J. Woan, and L. C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), no. 1-3, 229-239 crossref(new window)

8.
Z. Zhizheng, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl. 250 (1997), 51-60 crossref(new window)

9.
Z. Zhizheng and M. Liu, An extension of the generalized Pascal matrix and its algebraic properties, Linear Algebra Appl. 271 (1998), 169-177 crossref(new window)