JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A FREDHOLM MAPPING OF INDEX ZERO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A FREDHOLM MAPPING OF INDEX ZERO
Arbizu, Jose M. Soriano;
  PDF(new window)
 Abstract
Sufficient conditions are given to assert that between any two Banach spaces over Fredholm mappings share exactly N values in a specific open ball. The proof of the result is constructive and is based upon continuation methods.
 Keywords
zero point;continuation methods;continuous dependence theorem-homotopy;proper mapping;compact mapping;regular value;Fredholm mapping;isomorphism;
 Language
English
 Cited by
 References
1.
E. L. Allgower, A Survey of Homotopy Methods for Smooth Mappings, Numerical solution of nonlinear equations (Bremen, 1980), pp. 1-29, Lecture Notes in Math., 878, Springer, Berlin-New York, 1981

2.
E. L. Allgower, K. Glashoff, and H. Peitgen, Proceedings of the Conference on Numerical Solutions of Nonlinear Equations, Bremen, July 1980, Lecture Notes in Math. 878. Springer-Verlag, Berlin, 1981

3.
E. L. Allgower and K. Georg, Numerical Continuation Methods, An introduction. Springer Series in Computational Mathematics, 13. Springer-Verlag, Berlin, 1990

4.
J. C. Alexander and J. A. Yorke, The homotopy continuation method: numerically implementable topological procedures, Trans. Amer. Math. Soc. 242 (1978), 271-284 crossref(new window)

5.
S. Bernstein, Sur la generalisation du probleme de Dirichlet, Math. Ann. 69 (1910), no. 1, 82-136 crossref(new window)

6.
C. B. Garcia and T. Y. Li, On the number of solutions to polynomial systems of equations, SIAM J. Numer. Anal. 17 (1980), no. 4, 540-546 crossref(new window)

7.
C. B. Garcia and W. I. Zangwill, Determining all solutions to certain systems of non-linear equations, Math. Oper. Res. 4 (1979), no. 1, 1-14 crossref(new window)

8.
J. Leray and J. Shauder, Topologie et equations fonctionnelles, Ann. Sci. Ecole Norm. Sup. (3) 51 (1934), 45-78

9.
J. M. Soriano, Existence of zeros for bounded perturbations of proper mappings, Appl. Math. Comput. 99 (1999), no. 2-3, 255-259 crossref(new window)

10.
J. M. Soriano, Global minimum point of a convex function, Appl. Math. Comput. 55 (1993), no. 2-3, 213-218 crossref(new window)

11.
J. M. Soriano, Extremum points of a convex function, Appl. Math. Comput. 66 (1994), no. 2-3, 261-266 crossref(new window)

12.
J. M. Soriano, On the existence of zero points, Appl. Math. Comput. 79 (1996), no. 1, 99-104 crossref(new window)

13.
J. M. Soriano, On the number of zeros of a mapping, Appl. Math. Comput. 88 (1997), no. 2-3, 287-291 crossref(new window)

14.
J. M. Soriano, On the Bezout theorem real case, Comm. Appl. Nonlinear Anal. 2 (1995), no. 4, 59-66

15.
J. M. Soriano, On the Bezout theorem, Comm. Appl. Nonlinear Anal. 4 (1997), no. 2, 59-66

16.
J. M. Soriano, Mappings sharing a value on finite-dimensional spaces, Appl. Math. Comput. 121 (2001), no. 2-3, 391-395 crossref(new window)

17.
J. M. Soriano, Compact mappings and proper mappings between Banach spaces that share a value, Math. Balkanica (N.S.) 14 (2000), no. 1-2, 161-166

18.
J. M. Soriano, Zeros of compact perturbations of proper mappings, Comm. Appl. Nonlinear Anal. 7 (2000), no. 4, 31-37

19.
J. M. Soriano, A compactness condition, Appl. Math. Comput. 124 (2001), no. 3, 397-402 crossref(new window)

20.
J. M. Soriano, Open trajectories, Appl. Math. Comput. 124 (2001), no. 2, 235-240 crossref(new window)

21.
J. M. Soriano, On the existence of zero points of a continuous function, Acta Math. Sci. Ser. B Engl. Ed. 22 (2002), no. 2, 171-177

22.
J. M. Soriano, Fredholm and compact mappings sharing a value, Chinese translation in Appl. Math. Mech. 22 (2001), no. 6, 609-612

23.
J. M. Soriano and V. G. Angelov, A zero of a proper mapping, Fixed Point Theory 4 (2003), no. 1, 97-104

24.
S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965), 861-866 crossref(new window)

25.
E. Zeidler, Nonlinear Functional Analysis and Its Applications. III, Variational methods and optimization. Translated from the German by Leo F. Boron. Springer-Verlag, New York, 1985

26.
E. Zeidler, Applied Functional Analysis, Applied Mathematical Sciences, 109. Springer-Verlag, New York, 1995

27.
H. Cartan, Differential Calculus, Houghton Mifflin Co., Boston, Mass., 1971