JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REPRESENTATION AND DUALITY OF UNIMODULAR C*-DISCRETE QUANTUM GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REPRESENTATION AND DUALITY OF UNIMODULAR C*-DISCRETE QUANTUM GROUPS
Lining, Jiang;
  PDF(new window)
 Abstract
Suppose that D is a -discrete quantum group and a discrete quantum group associated with D. If there exists a continuous action of D on an operator algebra L(H) so that L(H) becomes a D-module algebra, and if the inner product on the Hilbert space H is D-invariant, there is a unique -representation of D associated with the action. The fixed-point subspace under the action of D is a Von Neumann algebra, and furthermore, it is the commutant of (D) in L(H).
 Keywords
discrete quantum group-algebra;representation;duality;
 Language
English
 Cited by
1.
C*-Homomorphisms and duality of C*-discrete quantum groups, Siberian Mathematical Journal, 2009, 50, 2, 360  crossref(new windwow)
2.
On projective representations for compact quantum groups, Journal of Functional Analysis, 2011, 260, 12, 3596  crossref(new windwow)
 References
1.
E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics, 74. Cambridge University Press, Cambridge-New York, 1980

2.
W. Arveson, An Invitation to C*-Algebras, Graduate Texts in Mathematics, no. 39. Springer-Verlag, New York-Heidelberg, 1976

3.
A. Van Daele, Multiplier Hopf algebras, Trans. Amer. Math. Soc. 342 (1994), no. 2, 917-932 crossref(new window)

4.
A. Van Daele, Discrete quantum groups, J. Algebra 180 (1996), no. 2, 431-444 crossref(new window)

5.
A. Van Daele, An algebraic framework for group duality, Adv. Math. 140 (1998), no. 2, 323-366 crossref(new window)

6.
A. Van Daele and Y. H. Zhang, Multiplier Hopf algebras of discrete type, J. Algebra 214 (1999), no. 2, 400-417 crossref(new window)

7.
E. G. Effros and Z. J. Ruan, Discrete quantum groups. I. The Haar measure, Internat. J. Math. 5 (1994), no. 5, 681-723 crossref(new window)

8.
W. Fulton and J. Harrie, Representation Theory: A First Course, Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991

9.
L. N. Jiang, M. Z. Guo, and M. Qian, The duality theory of a finite dimensional discrete quantum group, Proc. Amer. Math. Soc. 132 (2004), no. 12, 3537-3547 crossref(new window)

10.
L. N. Jiang and Z. D. Wang, The Schur-Weyl duality between quantum group of type A and Hecke algebra, Adv. Math. (China) 29 (2000), no. 5, 444-456

11.
M. Jimbo, A q-analogue of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247-252 crossref(new window)

12.
G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, Inc., Boston, MA, 1990

13.
P. Podles and S. L. Woronowicz, Quantum deformation of Lorentz group, Comm. Math. Phys. 130 (1990), no. 2, 381-431 crossref(new window)

14.
P. M. Soltan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), no. 4, 1245-1270

15.
M. E. Sweedler, Hopf Algebras, Mathematics Lecture Note Series W. A. Benjamin, Inc., New York 1969

16.
K. Szlachanyi and P. Vecsernyes, Quantum symmetry and braid group statistics in G-spin models, Comm. Math. Phys. 156 (1993), no. 1, 127-168 crossref(new window)

17.
H. Weyl, The Classical Groups. Their Invariants and Representations., Princeton University Press, Princeton, N.J., 1939

18.
S. L. Woronowicz, Twisted SU(2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117-181 crossref(new window)

19.
S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613-665 crossref(new window)