JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GROUP-FREENESS AND CERTAIN AMALGAMATED FREENESS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GROUP-FREENESS AND CERTAIN AMALGAMATED FREENESS
Cho, Il-Woo;
  PDF(new window)
 Abstract
In this paper, we will consider certain amalgamated free product structure in crossed product algebras. Let M be a von Neumann algebra acting on a Hilbert space Hand G, a group and let : G AutM be an action of G on M, where AutM is the group of all automorphisms on M. Then the crossed product $\mathbb{M}
 Keywords
crossed products of von Neumann algebras and groups;free product of algebras;moments and cumulants;
 Language
English
 Cited by
1.
DIRECT PRODUCTED W*-PROBABILITY SPACES AND CORRESPONDING AMALGAMATED FREE STOCHASTIC INTEGRATION,;

대한수학회보, 2007. vol.44. 1, pp.131-150 crossref(new window)
2.
ℂ-VALUED FREE PROBABILITY ON A GRAPH VON NEUMANN ALGEBRA,;

대한수학회지, 2010. vol.47. 3, pp.601-631 crossref(new window)
3.
CLASSIFICATION ON ARITHMETIC FUNCTIONS AND CORRESPONDING FREE-MOMENT L-FUNCTIONS,;

대한수학회보, 2015. vol.52. 3, pp.717-734 crossref(new window)
1.
CLASSIFICATION ON ARITHMETIC FUNCTIONS AND CORRESPONDING FREE-MOMENT L-FUNCTIONS, Bulletin of the Korean Mathematical Society, 2015, 52, 3, 717  crossref(new windwow)
2.
Applications of Automata and Graphs: Labeling-Operators in Hilbert Space I, Acta Applicandae Mathematicae, 2009, 107, 1-3, 237  crossref(new windwow)
3.
Histories Distorted by Partial Isometries, Journal of Physical Mathematics, 2011, 3, 1  crossref(new windwow)
4.
Applications of automata and graphs: Labeling operators in Hilbert space. II., Journal of Mathematical Physics, 2009, 50, 6, 063511  crossref(new windwow)
5.
ℂ-VALUED FREE PROBABILITY ON A GRAPH VON NEUMANN ALGEBRA, Journal of the Korean Mathematical Society, 2010, 47, 3, 601  crossref(new windwow)
 References
1.
G. C. Bell, Growth of the asymptotic dimension function for groups, (2005) Preprint

2.
I. Cho, Graph von Neumann algebras, ACTA. Appl. Math. 95 (2007), 95-134 crossref(new window)

3.
I. Cho, Characterization of amalgamated free blocks of a graph von Neumann algebra, Compl. Anal. Oper. Theo. 1 (2007), 367-398 crossref(new window)

4.
I. Cho, Direct producted $W^\ast$-probability spaces and corresponding amalgamated free stochastic integration, Bull. Korean Math. Soc. 44 (2007), no. 1, 131-150 crossref(new window)

5.
R. Gliman, V. Shpilrain, and A. G. Myasnikov, Computational and Statistical Group Theory, Contemporary Mathematics, 298. American Mathematical Society, Providence, RI, 2002

6.
V. Jones, Subfactors and Knots, CBMS Regional Conference Series in Mathematics, 80. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991

7.
M. T. Jury and D. W. Kribs, Ideal structure in free semigroupoid algebras from directed graphs, J. Operator Theory 53 (2005), no. 2, 273-302

8.
D. W. Kribs and S. C. Power, Free semigroupoid algebras, J. Ramanujan Math. Soc. 19 (2004), no. 2, 117-159

9.
A. G. Myasnikov and V. Shpilrain, Group Theory, Statistics, and Cryptography, Contemporary Mathematics, 360. American Mathematical Society, Providence, RI, 2004

10.
A. Nica, R-transform in free probability, IHP course note, available at www.math. uwaterloo.ca/-anica

11.
A. Nica, D. Shlyakhtenko, and R. Speicher, R-cyclic families of matrices in free probability, J. Funct. Anal. 188 (2002), no. 1, 227-271 crossref(new window)

12.
A. Nica and R. Speicher, R-diagonal pair-a common approach to Haar unitaries and circular elements), www.mast.queensu.ca/-speicher

13.
F. Radulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994), no. 2, 347-389 crossref(new window)

14.
D. Shlyakhtenko, Some applications of freeness with amalgamation, J. Reine Angew. Math. 500 (1998), 191-212

15.
D. Shlyakhtenko, A-valued semicircular systems, J. Funct. Anal. 166 (1999), no. 1, 1-47 crossref(new window)

16.
P. Sniady and R. Speicher, Continuous family of invariant subspaces for R-diagonal operators, Invent. Math. 146 (2001), no. 2, 329-363 crossref(new window)

17.
B. Solel, You can see the arrows in a quiver operator algebra, J. Aust. Math. Soc. 77 (2004), no. 1, 111-122 crossref(new window)

18.
R. Speicher, Combinatorial theory of the free product with amalgamation and operatorvalued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627, x+88 pp

19.
R. Speicher, Combinatorics of free probability theory ihp course note, available at www.mast. queensu.ca/-speicher

20.
J. Stallings, Centerless groups-an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134 crossref(new window)

21.
D. Voiculescu, Operations on certain non-commutative operator-valued random variables, Asterisque No. 232 (1995), 243-275

22.
D. Voiculescu, K. Dykemma, and A. Nica, Free Random Variables, A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. CRM Monograph Series, 1. American Mathematical Society, Providence, RI, 1992