JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SANDWICH THEOREMS FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING CARLSON-SHAFFER OPERATOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SANDWICH THEOREMS FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING CARLSON-SHAFFER OPERATOR
Shanmugam, Tirunelveli Nellaiappan; Srikandan, Sivasubramanian; Frasin, Basem Aref; Kavitha, Seetharaman;
  PDF(new window)
 Abstract
The purpose of this present paper is to derive some subordination and superordination results involving Carlson-Shaffer operator for certain normalized analytic functions in the open unit disk. Relevant connections of the results, which are presented in the paper, with various known results are also considered.
 Keywords
differential subordinations;differential superordinations;dominant;subordinant;
 Language
English
 Cited by
1.
Sufficient Conditions for Non-Bazilevič Functions, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
2.
Subordination and superordination results for the family of Jung-Kim-Srivastava integral operators, Filomat, 2010, 24, 1, 69  crossref(new windwow)
3.
Convolution operators in the geometric function theory, Journal of Inequalities and Applications, 2012, 2012, 1, 213  crossref(new windwow)
4.
Some Subclasses of Meromorphic Functions Associated with a Family of Integral Operators, Journal of Inequalities and Applications, 2009, 2009, 1, 931230  crossref(new windwow)
5.
Sandwich Theorems for Certain Subclasses of Analytic Functions Defined by Family of Linear Operators, Journal of Applied Analysis, 2009, 15, 2  crossref(new windwow)
6.
Differential sandwich results for certain subclasses of analytic functions, Mathematical and Computer Modelling, 2011, 54, 1-2, 803  crossref(new windwow)
 References
1.
R. M. Ali, V. Ravichandran, M. Hussain Khan, and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. (FJMS) 15 (2005), no. 1, 87-94

2.
T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math., New Ser. 13 (2002), no. 3, 301-311 crossref(new window)

3.
B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745 crossref(new window)

4.
S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Pure and Applied Mathematics No. 225, Marcel Dekker, New York, 2000

5.
S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables 48 (2003), no. 10, 815-826 crossref(new window)

6.
M. Obradovic, A class of univalent functions, Hokkaido Math. J. 27 (1998), no. 2, 329-335 crossref(new window)

7.
S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115 crossref(new window)

8.
T. N. Shanmugam, V. Ravichandran, and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, to appear in Aust. J. Math. Anal. Appl

9.
H. M. Srivastava and A. Y. Lashin, Some applications of the Briot-Bouquet differential subordination, J. Inequal. Pure Appl. Math. 6 (2005), no. 2, Article 41, 7 pp

10.
N. Tuneski, On certain sufficient conditions for starlikeness, Internat J. Math. Math. Sci. 23 (2000), no. 8, 521-527 crossref(new window)

11.
N. Tuneski and M. Darus, Fekete-Szego functional for non-Bazilevic functions, Acta Mathematica Academia Paedagogicae Nyiregyhaziensis 18 (2002), 63-65

12.
Z. Wang, C. Gao, and M. Liao, On certain generalized class of non-Bazilevic functions, Acta Mathematica Academia Paedagogicae Nyiregyhaziensis 21 (2005), 147-154