JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PRIMITIVE EVEN 2-REGULAR POSITIVE QUATERNARY QUADRATIC FORMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PRIMITIVE EVEN 2-REGULAR POSITIVE QUATERNARY QUADRATIC FORMS
Oh, Byeong-Kweon;
  PDF(new window)
 Abstract
In this paper, we provide a complete list of 177 equivalence classes of primitive even 2-regular quaternary positive definite quadratic forms and their discriminants. All of them have class number 1.
 Keywords
2-regular quaternary quadratic forms;
 Language
English
 Cited by
 References
1.
H. Brandt and O. Intrau, Tabellen reduzierter positiver ternarer quadratischer Formen, Abh. Sachs. Akad. Wiss. Math.-Nat. Kl. 45 (1958), no. 4, 261 pp

2.
W. K. Chan and B.-K. Oh, Finiteness theorems for positive definite n-regular quadratic forms, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2385-2396 crossref(new window)

3.
L. E. Dickson, Ternary quadratic forms and congruences, Ann. of Math. (2) 28 (1926/27), no. 1-4, 333-341 crossref(new window)

4.
A. G. Earnest, The representation of binary quadratic forms by positive definite quaternary quadratic forms, Trans. Amer. Math. Soc. 345 (1994), no. 2, 853-863 crossref(new window)

5.
W. C. Jagy, I. Kaplansky, and A. Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), no. 2, 332-341 crossref(new window)

6.
B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70 (1939), no. 1, 165-191 crossref(new window)

7.
A. Khosravani, Universal quadratic and Hermitian forms, Integral quadratic forms and lattices (Seoul, 1998), 43-49, Contemp. Math., 249, Amer. Math. Soc., Providence, RI, 1999

8.
Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, 106. Cambridge University Press, Cambridge, 1993

9.
G. Nipp, Quaternary Quadratic Forms, Springer-Verlag, New York, 1991

10.
O. T. O'Meara, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843-878 crossref(new window)

11.
O. T. O'Meara, Introduction to Quadratic Forms, Die Grundlehren der mathematischen Wissenschaften, Bd. 117 Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Gottingen-Heidelberg 1963

12.
B. L. van derWaerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265-309 crossref(new window)

13.
G. L. Watson, Some problems in the theory of numbers, Ph. D. Thesis, University of London, 1953

14.
G. L. Watson, The representation of integers by positive ternary quadratic forms, Mathematika 1 (1954), 104-110 crossref(new window)

15.
G. L. Watson, Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3) 12 (1962), 577-587 crossref(new window)

16.
G. L. Watson, Regular positive ternary quadratic forms, J. London Math. Soc. (2) 13 (1976), no. 1, 97-102 crossref(new window)