JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GROBNER-SHIRSHOV BASES FOR IRREDUCIBLE sp4-MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GROBNER-SHIRSHOV BASES FOR IRREDUCIBLE sp4-MODULES
Lee, Dong-Il;
  PDF(new window)
 Abstract
We give an explicit construction of Grobner-Shirshov pairs and monomial bases for finite-dimensional irreducible representations of the simple Lie algebra . We also identify the monomial basis consisting of the reduced monomials with a set of semistandard tableaux of a given shape, on which we give a colored oriented graph structure.
 Keywords
Grobner-Shirshov pair;monomial basis;representation;simple Lie algebra;Grobner-Shirshov graph;
 Language
English
 Cited by
1.
Gröbner-Shirshov Bases for Exceptional Lie Superalgebras, Algebra Colloquium, 2015, 22, 01, 1  crossref(new windwow)
2.
Standard monomials for the Weyl group F4, Journal of Algebra and Its Applications, 2016, 15, 08, 1650146  crossref(new windwow)
3.
Cyclotomic Hecke Algebras of G(r, p, n), Algebras and Representation Theory, 2010, 13, 6, 705  crossref(new windwow)
4.
MONOMIAL BASES FOR SOME IRREDUCIBLE 𝔤2-MODULES, Journal of Algebra and Its Applications, 2010, 09, 05, 705  crossref(new windwow)
 References
1.
L. A. Bokut, S.-J. Kang, K.-H. Lee, and P. Malcolmson, Grobner-Shirshov bases for Lie superalgebras and their universal enveloping algebras, J. Algebra 217 (1999), no. 2, 461-495 crossref(new window)

2.
L. A. Bokut and A. A. Klein, Serre relations and Grobner-Shirshov bases for simple Lie algebras I,II, Intenat. J. Algebra Comput. 6 (1996), no. 4, 389-400, 401-412 crossref(new window)

3.
L. A. Bokut, Grobner-Shirshov bases for exceptional Lie algebras I, J. Pure Appl. Algebra 133 (1998), no. 1-2, 51-57 crossref(new window)

4.
L. A. Bokut, Grobner-Shirshov bases for exceptional Lie algebras E6;E7;E8, in 'Algebra and combinatorics (Hong Kong, 1997)', 37-46, Springer-Verlag, Singapore, 1999

5.
B. Buchberger, An algorithm for finding a basis for the residue class ring of a zerodimensional ideal, Ph.D. thesis, University of Innsbruck, 1965

6.
J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI, 2002

7.
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972

8.
V. G. Kac, Infinite-dimensional Lie Algebras, Third edition. Cambridge University Press, Cambridge, 1990

9.
S.-J. Kang, D.-I. Lee, K.-H. Lee, and H. Park, Linear algebraic approach to Grobner-Shirshov basis theory, J. Algebra 313 (2007), no. 2, 988-1004 crossref(new window)

10.
S.-J. Kang, I.-S. Lee, K.-H. Lee, and H. Oh, Hecke algebras, Specht modules and Grobner-Shirshov bases, J. Algebra 252 (2002), no. 2, 258-292 crossref(new window)

11.
S.-J. Kang, Representations of Ariki-Koike algebras and Grobner-Shirshov bases, Proc. London Math. Soc. (3) 89 (2004), no. 1, 54-70 crossref(new window)

12.
S.-J. Kang and K.-H. Lee, Grobner-Shirshov bases for representation theory, J. Korean Math. Soc. 37 (2000), no. 1, 55-72

13.
S.-J. Kang and K.-H. Lee, Grobner-Shirshov bases for irreducible $sl_n+1$-modules, J. Algebra 232 (2000), no. 1, 1-20 crossref(new window)

14.
P. Lalonde and A. Ram, Standard Lyndon bases of Lie algebras and enveloping algebras, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1821-1830 crossref(new window)

15.
A. I. Shirshov, Some algorithm problems for Lie algebras, Sibirsk. Mat. Z. 3 (1962), 292-296