JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A PARTIAL CAYLEY TRANSFORM OF SIEGEL-JACOBI DISK
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A PARTIAL CAYLEY TRANSFORM OF SIEGEL-JACOBI DISK
Yang, Jae-Hyun;
  PDF(new window)
 Abstract
Let and be the Siegel upper half plane and the generalized unit disk of degree g respectively. Let be the Euclidean space of all complex matrices. We present a partial Cayley transform of the Siegel-Jacobi disk onto the Siegel-Jacobi space which gives a partial bounded realization of by . We prove that the natural actions of the Jacobi group on . and . are compatible via a partial Cayley transform. A partial Cayley transform plays an important role in computing differential operators on the Siegel Jacobi disk . invariant under the natural action of the Jacobi group explicitly.
 Keywords
partial Cayley transform;Siegel-Jacobi space;Siegel-Jacobi disk;Harish-Chandra decomposition;automorphic factors;Jacobi forms;
 Language
English
 Cited by
1.
SECTIONAL SURVATURES OF THE SIEGEL-JACOBI SPACE,;;;;;

대한수학회보, 2013. vol.50. 3, pp.787-799 crossref(new window)
2.
A Note on Maass-Jacobi Forms II,;

Kyungpook mathematical journal, 2013. vol.53. 1, pp.49-86 crossref(new window)
1.
Coherent states and geometry on the Siegel–Jacobi disk, International Journal of Geometric Methods in Modern Physics, 2014, 11, 04, 1450035  crossref(new windwow)
2.
A CONVENIENT COORDINATIZATION OF SIEGEL–JACOBI DOMAINS, Reviews in Mathematical Physics, 2012, 24, 10, 1250024  crossref(new windwow)
3.
Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Annals of Mathematics, Series B, 2010, 31, 1, 85  crossref(new windwow)
4.
SECTIONAL SURVATURES OF THE SIEGEL-JACOBI SPACE, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 787  crossref(new windwow)
5.
A Note on Maass-Jacobi Forms II, Kyungpook mathematical journal, 2013, 53, 1, 49  crossref(new windwow)
6.
CONSEQUENCES OF THE FUNDAMENTAL CONJECTURE FOR THE MOTION ON THE SIEGEL–JACOBI DISK, International Journal of Geometric Methods in Modern Physics, 2013, 10, 01, 1250076  crossref(new windwow)
7.
ON THE GEOMETRY OF SIEGEL–JACOBI DOMAINS, International Journal of Geometric Methods in Modern Physics, 2011, 08, 08, 1783  crossref(new windwow)
 References
1.
R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163. Birkhauser Verlag, Basel, 1998

2.
M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55, Birkhauser, Boston, Basel and Stuttgart, 1985

3.
A. W. Knapp, Representation Theory of Semisimple Groups, Princeton University Press, Princeton, New Jersey, 1986

4.
A. Koranyi and J. A. Wolf, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939 crossref(new window)

5.
H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953), 44-68 crossref(new window)

6.
I. Piateski-Sharpiro, Automorphic Functions and the Geometry of Classical Domains, Translated from the Russian. Mathematics and Its Applications, Vol. 8 Gordon and Breach Science Publishers, New York-London-Paris 1969

7.
I. Satake, Algebraic structures of symmetric domains, Kano Memorial Lectures, 4. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N. J., 1980

8.
C. L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1-86 crossref(new window)

9.
J.-H. Yang, The Siegel-Jacobi operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146 crossref(new window)

10.
J.-H. Yang, Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049 crossref(new window)

11.
J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canad. J. Math. 47 (1995), no. 6, 1329-1339 crossref(new window)

12.
J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Kyungpook Math. J. 40 (2000), no. 2, 209-237

13.
J.-H. Yang, The method of orbits for real Lie groups, Kyungpook Math. J. 42 (2002), no. 2, 199-272

14.
J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712

15.
J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, Journal of Number Theory 127 (2007), 83-102 crossref(new window)

16.
J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, arXiv:math.NT/0507217 v1 or revised version (2006)

17.
C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224 crossref(new window)