JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TATE PAIRING COMPUTATION ON THE DIVISORS OF HYPERELLIPTIC CURVES OF GENUS 2
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TATE PAIRING COMPUTATION ON THE DIVISORS OF HYPERELLIPTIC CURVES OF GENUS 2
Lee, Eun-Jeong; Lee, Yoon-Jin;
  PDF(new window)
 Abstract
We present an explicit Eta pairing approach for computing the Tate pairing on general divisors of hyperelliptic curves of genus 2, where is defined over with d=0 or 1. We use the resultant for computing the Eta pairing on general divisors. Our method is very general in the sense that it can be used for general divisors, not only for degenerate divisors. In the pairing-based cryptography, the efficient pairing implementation on general divisors is significantly important because the decryption process definitely requires computing a pairing of general divisors.
 Keywords
Tate pairing;Ate pairing;Eta pairing;hyperelliptic curve;pairing-based cryptosystems;
 Language
English
 Cited by
 References
1.
P. S. L. M. Barreto, S. D. Galbraith, C. O'hEigeartaigh, and M. Scott, Efficient pairing computation on supersingular abelian varieties, Des. Codes Cryptogr. 42 (2007), no. 3, 239-271 crossref(new window)

2.
P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, Efficient algorithms for pairing-based cryptosystems, Advances in cryptology-RYPTO 2002, 354-368, Lecture Notes in Comput. Sci., 2442, Springer, Berlin, 2002

3.
P. S. L. M. Barreto, B. Lynn, and M. Scott, On the selection of pairing-friendly groups, Selected areas in cryptography, 17-25, Lecture Notes in Comput. Sci., 3006, Springer, Berlin, 2004

4.
D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, SIAM J. Comput. 32 (2003), no. 3, 586-615 crossref(new window)

5.
D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing, Advances in cryptology-SIACRYPT 2001 (Gold Coast), 514-532, Lecture Notes in Comput. Sci., 2248, Springer, Berlin, 2001 crossref(new window)

6.
L. Chen and C. Kudla, Identity Based Authenticated Key Agreement Protocols from Pairings, Cryptology eprint Archives, Number 2002/184

7.
Y. Choie and E. Lee, Implementation of Tate pairing on hyperelliptic curves of genus 2, Information security and cryptology-CISC 2003, 97-111, Lecture Notes in Comput. Sci., 2971, Springer, Berlin, 2004

8.
I. Duursma and H. Lee, Tate pairing implementation for hyperelliptic curves $y^{2}$ = $x^{p}$ - x + d, Advances in cryptology-SIACRYPT 2003, 111-123, Lecture Notes in Comput. Sci., 2894, Springer, Berlin, 2003

9.
G. Frey and H.-G. Ruck, A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves, Math. Comp. 62 (1994), no. 206, 865-874 crossref(new window)

10.
S. Galbraith, Supersingular curves in cryptography, Advances in cryptology-SIACRYPT 2001 (Gold Coast), 495-513, Lecture Notes in Comput. Sci., 2248, Springer, Berlin, 2001

11.
S. Galbraith, K. Harrison, and D. Soldera, Implementing the Tate pairing, Algorithmic number theory (Sydney, 2002), 324-337, Lecture Notes in Comput. Sci., 2369, Springer, Berlin, 2002

12.
R. Granger, F. Hess, R. Oyono, N. Theriault, and F. Vercauteren, Ate pairing on hyperelliptic curves, Proceedings of Euro 2007, 430-447, Lecture Notes in Comput. Sci., 4515, Springer, Berlin, 2007

13.
M. Katagi, I. Kitamura, T. Akishita, and T. Takagi, Novel efficient implementations of hyperelliptic curve cryptosystems using degenerate divisors, In Information Security Applications-WISA'2004, 345-359, Lecture Notes in Comput. Sci., 3325, Springer, Berlin, 2005

14.
N. Koblitz, Algebraic Aspects of Cryptography, With an appendix by Alfred J. Menezes, Yi-Hong Wu and Robert J. Zuccherato. Algorithms and Computation in Mathematics, 3. Springer-Verlag, Berlin, 1998

15.
N. Koblitz and A. Menezes, Pairing-based cryptography at high security levels, Cryptography and coding, 13-36, Lecture Notes in Comput. Sci., 3796, Springer, Berlin, 2005

16.
A. J. Menezes, T. Okamoto, and S. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Trans. Inform. Theory 39 (1993), no. 5, 1639-1646 crossref(new window)

17.
D. Mumford, Tata Lectures on Theta. II, Jacobian theta functions and differential equations. With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. Progress in Mathematics, 43. Birkhauser Boston, Inc., Boston, MA, 1984

18.
K. Rubin and A. Silverberg, Using Abelian Varieties to Improve Pairing-Based Cryptography, to appear in Journal of Cryptology

19.
M. Scott and P. S. Barreto, Compressed pairings, Advances in cryptology-RYPTO 2004, 140-156, Lecture Notes in Comput. Sci., 3152, Springer, Berlin, 2004

20.
J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1986

21.
E. R. Verheul, Evidence that XTR is more secure than supersingular elliptic curve cryptosystems, Advances in cryptology-UROCRYPT 2001 (Innsbruck), 195-210, Lecture Notes in Comput. Sci., 2045, Springer, Berlin, 2001 crossref(new window)

22.
C. K. Yap, Fundamental Problems of Algorithmic Algebra, Oxford University Press, New York, 2000

23.
A.Weimerskirch, D. Stebila, and S. Shantz, Generic GF($2^{m}$) arithmetic in software and its application to ECC, Proceedings of ACISP 2003, 79-92, Lecture Notes in Comput. Sci., 2727, Springer, Berlin, 2003