JOURNAL BROWSE
Search
Advanced SearchSearch Tips
QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS
Choi, Veni; Ko, Chul-Ki; Park, Yong-Moon;
  PDF(new window)
 Abstract
We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system (), where is a quasi-local algebra, is a strongly continuous one parameter group of *-automorphisms of and is a Gibbs state on . The semigroups can be considered as the extension of semi groups on the nontrivial abelian subalgebra. Let be a Hilbert space corresponding to the GNS representation con structed from . Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup on . The semigroup acts separately on two subspaces and of , where is the diagonal subspace and is the off-diagonal subspace, $\mathcal{H}
 Keywords
KMS symmetric quantum Markovian semigroups;quantum spin systems;diagonal subspace;Glauber dynamics;
 Language
English
 Cited by
1.
Linear and Nonlinear Dissipative Dynamics, Reports on Mathematical Physics, 2016, 77, 3, 377  crossref(new windwow)
 References
1.
L. Accardi and S. Koyzyrev, Lectures on quantum interacting particle systems, Quantum interacting particle systems (Trento, 2000), 1-195, QP-PQ: Quantum Probab. White Noise Anal., 14, World Sci. Publ., River Edge, NJ, 2002

2.
S. Albeverio and R. Hoegh-Krohn, Dirichlet forms and Markovian semigroups on $C^{\ast}$-algebras, Comm. Math. Phys. 56 (1997), 173-187 crossref(new window)

3.
C. Bahn, C. K. Ko, and Y. M. Park, Dirichlet forms and symmetric Markovian semigroups on CCR algebras with respect to quasi-free states, J. Math. Phys. 44 (2003), no. 2, 723-753 crossref(new window)

4.
O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 2, Equilibrium states. Models in quantum statistical mechanics. Second edition. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997

5.
R. Carbone, F. Fagnola, and S. Hachicha, Generic quantum Markov semigroups: the Gaussian quage invariant case, preprint

6.
F. Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 147 (1997), no. 2, 259-300 crossref(new window)

7.
D. Goderis and C. Maes, Constructing quantum dissipations and their reversible states from classical interacting spin systems, Ann. Inst. H. Poincare Phys. Theor. 55 (1991), no. 3, 805-828

8.
Y. M. Park, Construction of Dirichlet forms on standard forms of von Neumann algebras, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 1, 1-14 crossref(new window)

9.
K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhauser, Basel, 1992