JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY
Baek, Jong-Il; Ko, Mi-Hwa; Kim, Tae-Sung;
  PDF(new window)
 Abstract
Under the condition of h-integrability and appropriate conditions on the array of weights, we establish complete convergence and strong law of large numbers for weighted sums of an array of dependent random variables.
 Keywords
complete convergence;strong law of large numbers;h-integrability;asymptotically almost negative associated;negatively quadrant dependent-mixing;
 Language
English
 Cited by
1.
Complete moment convergence of weighted sums for arrays of negatively dependent random variables and its applications, Communications in Statistics - Theory and Methods, 2016, 45, 11, 3185  crossref(new windwow)
2.
Some Limit Theorems for Arrays of Rowwise Pairwise Negatively Quadratic Dependent Random Variables, Theory of Probability & Its Applications, 2015, 59, 2, 344  crossref(new windwow)
3.
Some limit theorems for arrays of rowwise pairwise NQD random variables, Теория вероятностей и ее применения, 2014, 59, 2, 400  crossref(new windwow)
4.
On convergence for sequences of pairwise negatively quadrant dependent random variables, Applications of Mathematics, 2014, 59, 4, 473  crossref(new windwow)
 References
1.
P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968

2.
T. K. Chandra, Uniform integrability in the Cesaro sense and the weak law of large numbers, Sankhya Ser. A 51 (1989), no. 3, 309-317

3.
T. K. Chandra and S. Ghosal, Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Acta Math. Hungar. 71 (1996), no. 4, 327-336 crossref(new window)

4.
K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295 crossref(new window)

5.
T. S. Kim, M. H. Ko, and I. H. Lee, On the strong law for asymptotically almost negatively associated random variables, Rocky Mountain J. Math. 34 (2004), no. 3, 979-989 crossref(new window)

6.
D. Landers and L. Rogge, Laws of large numbers for pairwise independent uniformly integrable random variables, Math. Nachr. 130 (1987), 189-192 crossref(new window)

7.
E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153 crossref(new window)

8.
P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), no. 3, 209-213 crossref(new window)

9.
M. Ordonez Cabrera, Convergence of weighted sums of random variables and uniform integrability concerning the weights, Collect. Math. 45 (1994), no. 2, 121-132

10.
M. Ordonez Cabrera and A. I. Volodin, Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability, J. Math. Anal. Appl. 305 (2005), no. 2, 644-658 crossref(new window)