JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HYPERCYCLICITY ON INVARIANT SUBSPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HYPERCYCLICITY ON INVARIANT SUBSPACES
Petersson, Henrik;
  PDF(new window)
 Abstract
A continuous linear operator is called hypercyclic if there exists an such that the orbit is dense. We consider the problem: given an operator , hypercyclic or not, is the restriction to some closed invariant subspace hypercyclic? In particular, it is well-known that any non-constant partial differential operator p(D) on (entire functions) is hypercyclic. Now, if q(D) is another such operator, p(D) maps ker q(D) invariantly (by commutativity), and we obtain a necessary and sufficient condition on p and q in order that the restriction p(D) : ker q(D) ker q(D) is hypercyclic. We also study hypercyclicity for other types of operators on subspaces of .
 Keywords
hypercyclic;restriction;extension;invariant subspace;
 Language
English
 Cited by
 References
1.
J. Bes and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), no. 1, 94-112 crossref(new window)

2.
J. Bonet and A. Peris, Hypercyclic operators on non-normable Frechet spaces, J. Funct. Anal. 159 (1998), no. 2, 587-595 crossref(new window)

3.
E. M. Chirka, Complex Analytic Sets, Mathematics and its Applications (Soviet Series), 46. Kluwer Academic Publishers Group, Dordrecht, 1989

4.
S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 1999

5.
G. Godefroy and J. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269 crossref(new window)

6.
K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345-381 crossref(new window)

7.
L. Hormander, The Analysis of Linear Partial Differential Operators I (2nd edition), Springer-Verlag, 1990

8.
B. Malgrange, Existence et approximation des solutions des equations aux derivees partielles et des equations de convolution, Ann. Inst. Fourier, Grenoble 6 (1955), 271-355

9.
R. Meise and B. A. Taylor, Each nonzero convolution operator on the entire functions admits a continuous linear right inverse, Math. Z. 197 (1988), no. 1, 139-152 crossref(new window)

10.
V. P. Palamodov, Linear Differential Operators with Constant Coefficients, Die Grundlehren der mathematischen Wissenschaften, Band 168, Springer-Verlag, New York-Berlin, 1970

11.
H. Petersson, The PDE-preserving operators on nuclearly entire functions of bounded type, Acta Math. Hungar. 100 (2003), no. 1-2, 69-81 crossref(new window)

12.
H. Petersson, Rings of PDE-preserving operators on nuclearly entire functions, Studia Math. 163 (2004), no. 3, 217-229 crossref(new window)

13.
H. Petersson, PDE-preserving properties, J. Korean Math. Soc. 42 (2005), no. 3, 573-597 crossref(new window)

14.
H. Petersson, Hypercyclic subspaces for Frechet space operators, J. Math. Anal. Appl. 319 (2006), no. 2, 764-782 crossref(new window)

15.
S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22

16.
H. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), no. 6, 513-537 crossref(new window)

17.
E. L. Stout, Private communication

18.
F. Treves, Locally Convex Spaces and Linear Partial Differential Equations, Die Grundlehren der mathematischen Wissenschaften, Band 146, Springer-Verlag New York, Inc., New York, 1967