JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEIGHTED COMPOSITION OPERATORS ON WEIGHTED SPACES OF VECTOR-VALUED ANALYTIC FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEIGHTED COMPOSITION OPERATORS ON WEIGHTED SPACES OF VECTOR-VALUED ANALYTIC FUNCTIONS
Manhas, Jasbir Singh;
  PDF(new window)
 Abstract
Let V be an arbitrary system of weights on an open connected subset G of and let B (E) be the Banach algebra of all bounded linear operators on a Banach space E. Let (G, E) and (G, E) be the weighted locally convex spaces of vector-valued analytic functions. In this paper, we characterize self-analytic mappings and operator-valued analytic mappings which generate weighted composition operators and invertible weighted composition operators on the spaces (G, E) and (G, E) for different systems of weights V on G. Also, we obtained compact weighted composition operators on these spaces for some nice classes of weights
 Keywords
system of weights;Banach algebra;weighted locally convex spaces of vector-valued analytic functions;weighted composition operators;invertible and compact operators;
 Language
English
 Cited by
1.
Tensor sum and dynamical systems, Acta Mathematica Scientia, 2014, 34, 6, 1935  crossref(new windwow)
2.
Weighted composition operators between weighted spaces of vector-valued holomorphic functions on Banach spaces, Applied Mathematics and Computation, 2011, 218, 3, 929  crossref(new windwow)
 References
1.
K. D. Bierstedt, J. Bonet, and A. Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), no. 2, 271-297 crossref(new window)

2.
K. D. Bierstedt, J. Bonet, and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), no. 2, 137-168

3.
K. D. Bierstedt, R. Meise, and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), no. 1, 107-160 crossref(new window)

4.
K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), no. 1, 70-79 crossref(new window)

5.
J. Bonet, P. Domanski, M. Lindstrom, and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 101-118 crossref(new window)

6.
M. Cambern and K. Jarosz, The isometries of ${H^1}_{H}$, Proc. Amer. Math. Soc. 107 (1989), no. 1, 205-214 crossref(new window)

7.
M. D. Contreras and S. Diaz-Madrigal, Compact-type operators defined on $H^{\infty}$, Function spaces (Edwardsville, IL, 1998), 111-118, Contemp. Math., 232, Amer. Math. Soc., Providence, RI, 1999

8.
M. D. Contreras and A. G. Hernandez-Diaz, Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41-60 crossref(new window)

9.
M. D. Contreras and A. G. Hernandez-Diaz, Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263 (2001), no. 1, 224-233 crossref(new window)

10.
J. B. Conway, Functions of One Complex Variable, Second edition. Graduate Texts in Mathematics, 11. Springer-Verlag, New York-Berlin, 1978

11.
C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995

12.
K. De Leeuw, W. Rudin, and J. Wermer, The isometries of some function spaces, Proc. Amer. Math. Soc. 11 (1960), 694-698 crossref(new window)

13.
F. Forelli, The isometries of $H^{p}$, Canad. J. Math. 16 (1964), 721-728 crossref(new window)

14.
A. Galbis, Weighted Banach spaces of entire functions, Arch. Math. (Basel) 62 (1994), no. 1, 58-64 crossref(new window)

15.
J. B. Garnett, Bounded Analytic Functions, Academic Press, Inc. 1981

16.
F. Jafari, T. Tonev, E. Toneva, and K. Yale, Holomorphic flows, cocycles, and coboundaries, Michigan Math. J. 44 (1997), no. 2, 239-253 crossref(new window)

17.
C. J. Kolaski, Surjective isometries of weighted Bergman spaces, Proc. Amer. Math. Soc. 105 (1989), no. 3, 652-657 crossref(new window)

18.
P.-K. Lin, The isometries of $H^{\infty}$(E), Pacific J. Math. 143 (1990), no. 1, 69-77 crossref(new window)

19.
W. Lusky, On the structure of $H\upsilon_{0}$(D) and $h\upsilon_{0}$(D), Math. Nachr. 159 (1992), 279-289 crossref(new window)

20.
W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), no. 2, 309-320 crossref(new window)

21.
B. D. MacCluer and R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 4, 1437-1458 crossref(new window)

22.
J. S. Manhas, Multiplication operators on weighted locally convex spaces of vector-valued analytic functions, Southeast Asian Bull. Math. 27 (2003), no. 4, 649-660

23.
J. S. Manhas, Weighted composition operators on weighted locally convex spaces of analytic functions, Southeast Asian Bull. Math. 29 (2005), no. 1, 127-140

24.
T. Mazur, Canonical isometry on weighted Bergman spaces, Pacific J. Math. 136 (1989), no. 2, 303-310 crossref(new window)

25.
G. Mirzakarimi and K. Siddighi, Weighted composition operators on Bergman and Dirichlet spaces, Georgian Math. J. 4 (1997), no. 4, 373-383 crossref(new window)

26.
A. Montes-Rodriguez, Weighted composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc. (2) 61 (2000), no. 3, 872-884 crossref(new window)

27.
M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kodai Math. Sem. Rep. 11 (1959), 182-188 crossref(new window)

28.
S. Ohno, Weighted composition operators between $H^{\infty}$ and the Bloch space, Taiwanese J. Math. 5 (2001), no. 3, 555-563

29.
S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191-215 crossref(new window)

30.
S. Ohno and H. Takagi, Some properties of weighted composition operators on algebras of analytic functions, J. Nonlinear Convex Anal. 2 (2001), no. 3, 369-380

31.
S. Ohno and R. Zhao, Weighted composition operators on the Bloch space, Bull. Austral. Math. Soc. 63 (2001), no. 2, 177-185 crossref(new window)

32.
W. Rudin, Functional Analysis, McGraw-Hill Book Co., 1973

33.
J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993

34.
R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North-Holland Mathematics Studies, 179. North-Holland Publishing Co., Amsterdam, 1993

35.
R. K. Singh and J. S. Manhas, Invertible composition operators on weighted function spaces, Acta Sci. Math. (Szeged) 59 (1994), no. 3-4, 489-501

36.
A. Siskakis, Weighted composition semigroups on Hardy spaces, Proceedings of the symposium on operator theory (Athens, 1985). Linear Algebra Appl. 84 (1986), 359-371 crossref(new window)