JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PROJECTIVE DOMAINS WITH NON-COMPACT AUTOMORPHISM GROUPS I
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PROJECTIVE DOMAINS WITH NON-COMPACT AUTOMORPHISM GROUPS I
Yi, Chang-Woo;
  PDF(new window)
 Abstract
Most of domains people have studied are convex bounded projective (or affine) domains. Edith - [15] characterized ellipsoid in by studying projective automorphism of convex body. In this paper, we showed convex and bounded projective domains can be identified from local data of their boundary points using scaling technique developed by several mathematicians. It can be found that how the scaling technique combined with properties of projective transformations is used to do that for a projective domain given local data around singular boundary point. Furthermore, we identify even unbounded or non-convex projective domains from its local data about a boundary point.
 Keywords
quadratic;projective domains;automorphism;ellipsoid;scaling sequence;unbounded domains;
 Language
English
 Cited by
1.
Characterizing the unit ball by its projective automorphism group, Geometry & Topology, 2016, 20, 4, 2397  crossref(new windwow)
 References
1.
E. Bedford and S. Pinchuk, Domains in $C^{2}$ with noncompact groups of holomorphic automorphisms, Mat. Sb. (N.S.) 135(177) (1988), no. 2, 147-157, 271; translation in Math. USSR-Sb. 63 (1989), no. 1, 141-151

2.
E. Bedford and S. Pinchuk, Domains in $C^{n+1}$ with noncompact automorphism group, J. Geom. Anal. 1 (1991), no. 3, 165-191 crossref(new window)

3.
J. P. Benzecri, Sur les varietes localement affines et localement projectives, Bull. Soc. Math. France 88 (1960), 229-332

4.
B. Colbois and P. Verovic, Rigidity of Hilbert metrics, Bull. Austral. Math. Soc. 65 (2002), no. 1, 23-34 crossref(new window)

5.
W. M. Goldman, Two examples of affine manifolds, Pacific J. Math. 94 (1981), no. 2, 327-330 crossref(new window)

6.
W. M. Goldman, Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987), 169-198, Contemp. Math., 74, Amer. Math. Soc., Providence, RI, 1988 crossref(new window)

7.
W. M. Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990), no. 3, 791-845

8.
H. Kim, Actions of infinite discrete groups of projective transformation, Proc. Second GARC Symposium on Pure and Applied Math. Part III, 1-9

9.
K. T. Kim, Complete localization of domains with noncompact automorphism groups, Trans. Amer. Math. Soc. 319 (1990), no. 1, 139-153 crossref(new window)

10.
K. T. Kim, Geometry of bounded domains and the scaling techniques in several complex variables, Lecture Notes Series 13, Research Institutes of Mathematics Global Analysis Research Center, Seoul National University

11.
S. Kobayashi, Projectively invariant distances for affine and projective structures, Differential geometry (Warsaw, 1979), 127-152, Banach Center Publ., 12, PWN, Warsaw, 1984

12.
N. H. Kuiper, On convex locally-projective spaces, Convegno Internazionale di Geometria Differenziale, Italia, 1953, pp. 200-213. Edizioni Cremonese, Roma, 1954

13.
K. S. Park, Some results on the geometry and topology of affine flat manifolds, Ph. D. thesis, Seoul National University, Aug, 1997

14.
S. Pinchuk, Holomorphic inequivalences of some classes of domains in $\mathbb{C}^{n}$, Mat. USSR Sbornik 39 (1981), 61-86 crossref(new window)

15.
E. Socie-Methou, Caracterisation des ellipsoides par leurs groupes d'automorphismes, Ann. Sci. Ecole Norm. Sup. (4) 35 (2002), no. 4, 537-548

16.
J. Vey, Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 641-665

17.
E. B. Vinberg and V. G. Kac, Quasi-homogeneous cones, Math. Notes 1 (1967), 231-235, (translated from Mathematicheskie Zametki, Vol. 1 (1967), no. 3, 347-354

18.
C. W. Yi, Projective domains with non-compact automorphism groups II, preprint