JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS AND THE VALUE OF RELATIVE ZETA FUNCTIONS AT ZERO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS AND THE VALUE OF RELATIVE ZETA FUNCTIONS AT ZERO
Lee, Yoon-Weon;
  PDF(new window)
 Abstract
The purpose of this paper is to discuss the constant term appearing in the BFK-gluing formula for the zeta-determinants of Laplacians on a complete Riemannian manifold when the warped product metric is given on a collar neighborhood of a cutting compact hypersurface. If the dimension of a hypersurface is odd, generally this constant is known to be zero. In this paper we describe this constant by using the heat kernel asymptotics and compute it explicitly when the dimension of a hypersurface is 2 and 4. As a byproduct we obtain some results for the value of relative zeta functions at s
 Keywords
(relative) zeta-determinant;BFK-gluing formula;Dirichlet-to-Neumann operator;Dirichlet boundary condition;warped product metric;
 Language
English
 Cited by
1.
Relative zeta-determinants of Dirac Laplacians on a half-infinite cylinder with boundary conditions in the smooth, self-adjoint Grassmannian, Journal of Geometry and Physics, 2009, 59, 8, 1137  crossref(new windwow)
2.
The Burghelea-Friedlander-Kappeler–gluing formula for zeta-determinants on a warped product manifold and a product manifold, Journal of Mathematical Physics, 2015, 56, 12, 123501  crossref(new windwow)
 References
1.
U. Bunke, Relative index theory, J. Funct. Anal. 105 (1992), no. 1, 63-76 crossref(new window)

2.
D. Burghelea, L. Friedlander, and T. Kappeler, Meyer-Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992), no. 1, 34-65 crossref(new window)

3.
G. Carron, Determinant relatif et la fonction Xi, Amer. J. Math. 124 (2002), no. 2, 307-352 crossref(new window)

4.
G. Grubb and R. Seeley, Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Invent. Math. 121 (1995), no. 3, 481-529 crossref(new window)

5.
C. Kassel, Le residu non commutatif (d'apres M. Wodzicki), Seminaire Bourbaki, Vol. 1988/89. Asterisque No. 177-178 (1989), Exp. No. 708, 199-229

6.
P. Kirk and M. Lesch, The $\eta$-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16 (2004), no. 4, 553-629 crossref(new window)

7.
Y. Lee, Mayer-Vietoris formula for the determinant of a Laplace operator on an evendimensional manifold, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1933-1940 crossref(new window)

8.
Y. Lee, Mayer-Vietoris formula for determinants of elliptic operators of Laplace-Beltrami type (after Burghelea, Friedlander and Kappeler), Differential Geom. Appl. 7 (1997), no. 4, 325-340 crossref(new window)

9.
Y. Lee, Burghelea-Friedlander-Kappeler's gluing formula for the zeta-determinant and its applications to the adiabatic decompositions of the zeta-determinant and the analytic torsion, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4093-4110 crossref(new window)

10.
Y. Lee, The zeta-determinants of Dirac Laplacians with boundary conditions on the smooth, self-adjoint Grassmannian, J. Geom. Phys. 57 (2007), no. 10, 1951-1976 crossref(new window)

11.
P. Loya and J. Park, On the gluing problem for the spectral invariants of Dirac operators, Adv. Math. 202 (2006), no. 2, 401-450 crossref(new window)

12.
W. Muller, Eta invariants and manifolds with boundary, J. Differential Geom. 40 (1994), no. 2, 311-377

13.
W. Muller, Relative zeta functions, relative determinants and scattering theory, Comm. Math. Phys. 192 (1998), no. 2, 309-347 crossref(new window)

14.
J. Muller and W. Muller, Regularized determinants of Laplace-type operators, analytic surgery, and relative determinants, Duke Math. J. 133 (2006), no. 2, 259-312 crossref(new window)

15.
P. Park and K. Wojciechowski, Adiabatic decomposition of the $\zeta$-determinant of the Dirac Laplacian. I. The case of an invertible tangential operator, With an appendix by Yoonweon Lee, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1407-1435 crossref(new window)

16.
P. Park and K. Wojciechowski, Agranovich-Dynin formula for the zeta-determinants of the Neumann and Dirichlet problems, Spectral geometry of manifolds with boundary and decomposition of manifolds, 109-121, Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005 crossref(new window)

17.
S. G. Scott and K. P. Wojciechowski, The $\zeta$-determinant and Quillen determinant for a Dirac operator on a manifold with boundary, Geom. Funct. Anal. 10 (2000), no. 5, 1202-1236 crossref(new window)

18.
M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Translated from the Russian by Stig I. Andersson. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1987

19.
W. Voros, Spectral functions, special functions and the Selberg zeta function, Comm. Math. Phys. 110 (1987), no. 3, 439-465 crossref(new window)