JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BEST PROXIMITY PAIRS AND NASH EQUILIBRIUM PAIRS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BEST PROXIMITY PAIRS AND NASH EQUILIBRIUM PAIRS
Kim, Won-Kyu; Kum, Sang-Ho;
  PDF(new window)
 Abstract
Main purpose of this paper is to combine the optimal form of Fan`s best approximation theorem and Nash`s equilibrium existence theorem into a single existence theorem simultaneously. For this, we first prove a general best proximity pair theorem which includes a number of known best proximity theorems. Next, we will introduce a new equilibrium concept for a generalized Nash game with normal form, and as applications, we will prove new existence theorems of Nash equilibrium pairs for generalized Nash games with normal form.
 Keywords
best proximity pairs;Nash equilibrium pair;
 Language
English
 Cited by
1.
EXISTENCE OF NASH EQUILIBRIUM IN A COMPACT ACYCLIC STRATEGIC GAME,;;

충청수학회지, 2010. vol.23. 1, pp.29-35
1.
A Note on Existence and Convergence of Best Proximity Points for Pointwise Cyclic Contractions, Numerical Functional Analysis and Optimization, 2011, 32, 7, 821  crossref(new windwow)
2.
Nash equilibria without continuity of the choice rules, Acta Mathematica Scientia, 2011, 31, 4, 1535  crossref(new windwow)
 References
1.
M. Avriel, W. E. Diewert, S. Schaible, and I. Zang, Generalized Concavity, Plenum Press, New York, 1988

2.
G. Beer and D. Pai, Proximal maps, prox maps and coincidence points, Numer. Funct. Anal. Optim. 11 (1990), no. 5-6, 429-448 crossref(new window)

3.
K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985

4.
G. Debreu, A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 886-893 crossref(new window)

5.
J. Dugundji and A. Granas, Fixed Point Theory. I, Polish Sci. Publ., Warsaw, 1982

6.
K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 121-126 crossref(new window)

7.
K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 42-47 crossref(new window)

8.
K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240 crossref(new window)

9.
J. Friedman, Oligopoly and the Theory of Games, North-Holland, Amsterdam, 1977

10.
I. Joo, Answer to a problem of M. Horvath and A. Sovegjarto, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 29 (1986), 203-207 (1987)

11.
W. K. Kim and K. H. Lee, The existence of Nash equilibrium in n-person games with C-concavity, Comput. Math. Appl. 44 (2002), no. 8-9, 1219-1228 crossref(new window)

12.
W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), no. 2, 433-446 crossref(new window)

13.
M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152 (1990), no. 1, 46-60 crossref(new window)

14.
J. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 48-49 crossref(new window)

15.
J. Nash, Non-cooperative games, Ann. of Math. (2) 54 (1951), 286-295 crossref(new window)

16.
H. Nikaido and K. Isoda, Note on non-cooperative convex games, Pacific J. Math. 5 (1955), 807-815 crossref(new window)

17.
K. Nishimura and J. Friedman, Existence of Nash equilibrium in n-person games without quasiconcavity, Internat. Econom. Rev. 22 (1981), no. 3, 637-648 crossref(new window)

18.
S. Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), no. 1, 104-113 crossref(new window)

19.
S. Sadiq Basha and P. Veeramani, Best proximity pairs and best approximations, Acta Sci. Math. (Szeged) 63 (1997), no. 1-2, 289-300

20.
S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory 103 (2000), no. 1, 119-129 crossref(new window)

21.
V. M. Sehgal and S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Amer. Math. Soc. 102 (1988), no. 3, 534-537 crossref(new window)

22.
I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970

23.
P. S. Srinivasan and P. Veeramani, On best proximity pair theorems and fixed-point theorems, Abstr. Appl. Anal. 2003 (2003), no. 1, 33-47 crossref(new window)

24.
P. S. Srinivasan and P. Veeramani, On existence of equilibrium pair for constrained generalized games, Fixed Point Theory Appl. 2004 (2004), no. 1, 21-29 crossref(new window)