JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES II
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES II
Kim, Dae-Yeoul; Koo, Ja-Kyung;
  PDF(new window)
 Abstract
Let k be an imaginary quadratic field, the complex upper half plane, and let ${\tau}{\in}{\eta}{\cap}k,\;q
 Keywords
algebraic number;theta series;Rogers-Ramanujan identities;
 Language
English
 Cited by
 References
1.
B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989

2.
B. C. Berndt, Ramanujan's Notebooks. Part III, Springer-Verlag, New York, 1991

3.
B. C. Berndt, Ramanujan's Notebooks. Part IV, Springer-Verlag, New York, 1994

4.
D. Kim and J. K. Koo, Algebraic integers as values of elliptic functions, Acta Arith. 100 (2001), no. 2, 105-116 crossref(new window)

5.
D. Kim and J. K. Koo, On the infinite products derived from theta series I, J. Korean Math. Soc. 44 (2007), no. 1, 55-107 crossref(new window)

6.
S. Lang, Elliptic Functions, Addison-Wesley Publishing Co., Inc., Reading, Mass. -London-Amsterdam, 1973

7.
C. L. Siegel, Transcendental Numbers, Annals of Mathematics Studies, no. 16. Princeton University Press, Princeton, N. J., 1949

8.
A. V. Sills, On identities of the Rogers-Ramanujan type, Ramanujan J. 11 (2006), no. 3, 403-429 crossref(new window)

9.
M. Waldschmidt, Nombres Transcendants, Lecture Notes in Mathematics, Vol. 402. Springer-Verlag, Berlin-New York, 1974

10.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions. Fourth edition. Reprinted Cambridge University Press, New York 1962