JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MYLLER CONFIGURATIONS IN FINSLER SPACES. APPLICATIONS TO THE STUDY OF SUBSPACES AND OF TORSE FORMING VECTOR FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MYLLER CONFIGURATIONS IN FINSLER SPACES. APPLICATIONS TO THE STUDY OF SUBSPACES AND OF TORSE FORMING VECTOR FIELDS
Constantinescu, Oana;
  PDF(new window)
 Abstract
In this paper we define a Myller configuration in a Finsler space and use some special configurations to obtain results about Finsler subspaces. Let = (M,F) be a Finsler space, with M a real, differentiable manifold of dimension n. Using the pull back bundle of the tangent bundle by the mapping and the Cartan Finsler connection of a Finsler space, we obtain an orthonormal frame of sections of along a regular curve in and a system of invariants, geometrically associated to the Myller configuration. The fundamental equations are written in a very simple form and we prove a fundamental theorem. Important lines in a Finsler subspace are defined like special lines in a Myller configuration, geometrically associated to the subspace: auto parallels, lines of curvature, asymptotes. Torse forming vector fields with respect to the Cartan Finsler connection are characterized by means of the invariants of the Frenet frame of a versor field along a curve, and the new notion of torse forming vector fields in the sense of Myller is introduced. The particular cases of concurrence and parallelism in the sense of Myller are completely studied, for vector fields from the distribution of the Myller configuration and also from the normal distribution .
 Keywords
Myller configuration;Finsler subspace;torse forming vector field;
 Language
English
 Cited by
 References
1.
D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, Vol. 200, Springer-Verlag, New York, 2000

2.
A. Bejancu, Finsler Geometry and Applications, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood, New York, 1990

3.
F. Brickell and K. Yano, Concurrent vector fields and Minkowski structures, Kodai Math. Sem. Rep. 26 (1974/75), 22-28 crossref(new window)

4.
O. Constantinescu, Myller configurations M(C,$\xi1$,$T^{2n-1}$) on TM, with $F^{n}$ = (M, F) a Finsler space, Tensor (N.S.) 66 (2005), no. 2, 118-130

5.
O. Constantinescu, Myller configurations in Finsler spaces, Proc. of the 4th Annual Symposium on Mathematics Applied in Biology & Biophysics, Sci. Annals of UASVM Iasi, tom XLVIII, v. 2 (2005), 247-272

6.
O. Constantinescu, Myller configurations M(C,$\xi1$,$T^{n-1}$) in Finsler spaces $F^{n}$ = (M, F): applications to the study of Finsler hypersurfaces, Tensor (N.S.) 68 (2007), no. 1, 89-117

7.
B. T. Hassan, Subspaces of a Finsler space, Sem. de Geom. Si topologie, 54, Univ. Timisoara, 1980

8.
Q. A. Khu, Geometria Configuratiilor Myller din spatii Finsler, Aplicatii la studiul subvarietatilor Fm din Fn, PhD thesis, (romanian) Univ. "Al. I. Cuza" Iasi, 1977

9.
M. Matsumoto and K. Eguchi, Finsler spaces admitting a concurrent vector field, Tensor (N.S.) 28 (1974), 239-249

10.
M. Matsumoto and K. Eguchi, The induced and intrinsic connections of a hypersurface and Finslerian projective geometry, J. Math. Sci. Univ. Kyoto 25 (1985), 107-144

11.
M. Matsumoto, Finsler geometry in the 20th-century, Handbook of Finsler geometry. Vol. 1, 2, 557-66, Kluwer Acad. Publ., Dordrecht, 2003

12.
R. Miron, Les configurations de Myller $\mathcal{M}$(C,$\xi1^i$,$T^m$) dans les espaces de Riemann $V_n$. II, Tensor (N.S.) 15 (1964), 74-86

13.
R. Miron, Geometria Configuratiilor Myller, Editura Tehnica, Bucharest 1966

14.
R. Miron, M. Anastasiei, and I. Bucataru, The geometry of Lagrange spaces, Handbook of Finsler geometry. Vol. 1, 2, 969-1122, Kluwer Acad. Publ., Dordrecht, 2003

15.
R. B. Misra and C. K. Mishra, Torse-forming infinitesimal transformations in a Finsler space, Tensor (N.S.) 65 (2004), no. 1, 1-7

16.
A. Myller, Les systemes de courbes sur une surface et le parallelisme de Levi-Civita, C. R. Math. Acad. Sci. Paris, T 176 (1923)

17.
A. Myller, Le parallelisme au sens de Levi-Civita dans un systeme de plans, Ann. Sci. Univ. Jassy, T. XIII

18.
P. N. Pandey, Finsler spaces admitting a concurrent vector field, J. Nat. Acad. Math. India 10 (1992/96), 144-149 (1997)

19.
J. A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications, 2d. ed. Die Grundlehren der mathematischen Wissenschaften in Einzel-darstellungen mit besonderer Berucksichtigung der Anwendungsgebiete, Bd X. Springer-Verlag, Berlin-Gottingen-Heidelberg, 1954

20.
A. A. Tamim, Special types of Finsler submanifolds, J. Egyptian Math. Soc. 8 (2000), no. 1, 47-60

21.
A. A. Tamim, Submanifolds of a Finsler manifold, J. Egyptian Math. Soc. 6 (1998), no. 1, 27-37

22.
K. Yano, B.-Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep. 23 (1971), 343-350 crossref(new window)

23.
K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944), 340-345 crossref(new window)