JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPUTATION OF THE NIELSEN TYPE NUMBERS FOR MAPS ON THE KLEIN BOTTLE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPUTATION OF THE NIELSEN TYPE NUMBERS FOR MAPS ON THE KLEIN BOTTLE
Kim, Hyun-Jung; Lee, Jong-Bum; Yoo, Won-Sok;
  PDF(new window)
 Abstract
Let f : M M be a self-map on the Klein bottle M. We compute the Lefschetz number and the Nielsen number of f by using the infra-nilmanifold structure of the Klein bottle and the averaging formulas for the Lefschetz numbers and the Nielsen numbers of maps on infra-nilmanifolds. For each positive integer n, we provide an explicit algorithm for a complete computation of the Nielsen type numbers and .
 Keywords
Klein bottle;Nielsen type numbers;weakly Jiang maps;
 Language
English
 Cited by
1.
Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with Sol 1 4 $\operatorname{Sol}_{1}^{4}$ -geometry, Fixed Point Theory and Applications, 2015, 2015, 1  crossref(new windwow)
2.
Minimal number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds, Geometriae Dedicata, 2016  crossref(new windwow)
3.
Estimation of the minimal number of periodic points for smooth self-maps of odd dimensional real projective spaces, Topology and its Applications, 2012, 159, 18, 3752  crossref(new windwow)
4.
Minimal number of periodic points for smooth self-maps of RP3, Topology and its Applications, 2010, 157, 10-11, 1784  crossref(new windwow)
5.
The Nielsen and Reidemeister numbers of maps on infra-solvmanifolds of type (R), Topology and its Applications, 2015, 181, 62  crossref(new windwow)
6.
Nielsen Type Numbers of Self-Maps on the Real Projective Plane, Fixed Point Theory and Applications, 2010, 2010, 1, 327493  crossref(new windwow)
7.
Combinatorial scheme of finding minimal number of periodic points for smooth self-maps of simply connected manifolds, Journal of Fixed Point Theory and Applications, 2013, 13, 1, 63  crossref(new windwow)
8.
Homotopical theory of periodic points of periodic homeomorphisms on closed surfaces, Topology and its Applications, 2009, 156, 15, 2527  crossref(new windwow)
 References
1.
D. V. Anosov, Nielsen numbers of mappings of nil-manifolds, Uspekhi Mat. Nauk 40 (1985), no. 4(244), 133-134

2.
R. B. S. Brooks, R. F. Brown, J. Pak, and D. H. Taylor, Nielsen numbers of maps of tori, Proc. Amer. Math. Soc. 52 (1975), 398-400 crossref(new window)

3.
O. Davey, E. Hart, and K. Trapp, Computation of Nielsen numbers for maps of closed surfaces, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3245-3266 crossref(new window)

4.
B. Halpern, Periodic points on tori, Pacific J. Math. 83 (1979), no. 1, 117-133 crossref(new window)

5.
P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds, C. R. Math. Rep. Acad. Sci. Canada 16 (1994), no. 6, 229-234

6.
P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds. I, Topology Appl. 76 (1997), no. 3, 217-247 crossref(new window)

7.
P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds. II, Topology Appl. 106 (2000), no. 2, 149-167 crossref(new window)

8.
P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory on solvmanifolds. III. Calculations, Quaest. Math. 25 (2002), no. 2, 177-208 crossref(new window)

9.
B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics, 14. American Mathematical Society, Providence, R.I., 1983

10.
S. W. Kim, J. B. Lee, and K. B. Lee, Averaging formula for Nielsen numbers, Nagoya Math. J. 178 (2005), 37-53

11.
J. Y. Kim, S. S. Kim, and X. Zhao, Minimal sets of periods for maps on the Klein bottle, J. Korean Math. Soc. 45 (2008), no. 3, 883-902 crossref(new window)

12.
J. B. Lee and K. B. Lee, Lefschetz numbers for continuous maps, and periods for expanding maps on infra-nilmanifolds, J. Geom. Phys. 56 (2006), no. 10, 2011-2023 crossref(new window)

13.
K. B. Lee, Maps on infra-nilmanifolds, Pacific J. Math. 168 (1995), no. 1, 157-166 crossref(new window)