JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RIBAUCOUR TRANSFORMATIONS ON LORENTZIAN SPACE FORMS IN LORENTZIAN SPACE FORMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RIBAUCOUR TRANSFORMATIONS ON LORENTZIAN SPACE FORMS IN LORENTZIAN SPACE FORMS
Park, Joon-Sang;
  PDF(new window)
 Abstract
We study Ribaucour transformations on nondegenerate local isometric immersions of Lorentzian space forms into Lorentzian space forms with the same sectional curvatures which have flat normal bundles. They can be associated to dressing actions on the solution space of Lorentzian Grassmannian systems.
 Keywords
Lorentzian space form;Ribaucour transformation;flat connection;nondegenerate;Lorentzian Grassmannian system;
 Language
English
 Cited by
1.
Serum Eosinophil-Derived Neurotoxin (EDN) in Diagnosis and Evaluation of Severity and Bronchial Hyperresponsiveness in Childhood Asthma, Lung, 2007, 185, 2, 97  crossref(new windwow)
 References
1.
M. Bruck, X. Du, J. Park, and C. L. Terng, The submanifold geometries associated to Grassmannian systems, Mem. Amer. Math. Soc. 155 (2002), no. 735, viii+95 pp.

2.
M. Dajczer and R. Tojeiro, An extension of the classical Ribaucour transformation, Proc. London Math. Soc. (3) 85 (2002), no. 1, 211-232

3.
L. P. Eisenhart, A Treatise on The Differential Geometry of Curves and Surfaces, Dover Publications, Inc., New York 1960

4.
J. Park, Lorentzian submanifolds in Lorentzian space form with the same constant curvatures, Geom. Dedicata 108 (2004), 93-104 crossref(new window)

5.
J. Park, Lorentzian surfaces with constant curvatures and transformations in the 3-dimensional Lorentzian space, J. Korean Math. Soc. 45 (2008), no. 1, 41-61 crossref(new window)

6.
K. Tenenblat, Backlund's theorem for submanifolds of space forms and a generalized wave equation, Bol. Soc. Brasil. Mat. 16 (1985), no. 2, 69-94 crossref(new window)

7.
K. Tenenblat and C. L. Terng, Backlund's theorem for n-dimensional submanifolds of $R^{2n-1}$, Ann. of Math. (2) 111 (1980), no. 3, 477-490 crossref(new window)

8.
C. L. Terng, A higher dimension generalization of the sine-Gordon equation and its soliton theory, Ann. of Math. (2) 111 (1980), no. 3, 491-510 crossref(new window)

9.
C. L. Terng, Soliton equations and differential geometry, J. Differential Geom. 45 (1997), no. 2, 407-445

10.
K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), no. 1, 1-50