JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES USING COMPLETE DIFFERENCES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES USING COMPLETE DIFFERENCES
Cho, Jung-R.; Gould, Ronald J.;
  PDF(new window)
 Abstract
The complete multipartite graph having n partite sets of size 2t, with and , is shown to have a decomposition into gregarious 6-cycles, that is, the cycles which have at most one vertex from any particular partite set. Complete sets of differences of numbers in are used to produce starter cycles and obtain other cycles by rotating the cycles around the n-gon of the partite sets.
 Keywords
multipartite graph;graph decomposition;gregarious cycle;difference set;
 Language
English
 Cited by
1.
ON DECOMPOSITIONS OF THE COMPLETE EQUIPARTITE GRAPHS Kkm(2t) INTO GREGARIOUS m-CYCLES,;

East Asian mathematical journal , 2013. vol.29. 3, pp.337-347 crossref(new window)
2.
CIRCULANT DECOMPOSITIONS OF CERTAIN MULTIPARTITE GRAPHS INTO GREGARIOUS CYCLES OF A GIVEN LENGTH,;

East Asian mathematical journal , 2014. vol.30. 3, pp.311-319 crossref(new window)
1.
CIRCULANT DECOMPOSITIONS OF CERTAIN MULTIPARTITE GRAPHS INTO GREGARIOUS CYCLES OF A GIVEN LENGTH, East Asian mathematical journal , 2014, 30, 3, 311  crossref(new windwow)
2.
A NOTE ON DECOMPOSITION OF COMPLETE EQUIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES, Bulletin of the Korean Mathematical Society, 2007, 44, 4, 709  crossref(new windwow)
3.
ON DECOMPOSITIONS OF THE COMPLETE EQUIPARTITE GRAPHS Kkm(2t) INTO GREGARIOUS m-CYCLES, East Asian mathematical journal , 2013, 29, 3, 337  crossref(new windwow)
4.
Some gregarious kite decompositions of complete equipartite graphs, Discrete Mathematics, 2013, 313, 5, 726  crossref(new windwow)
 References
1.
B. Alspach and H. Gavlas, Cycle decompositions of $K_{n}$ and $K_{n}$ − I, J. Combin. Theory Ser. B 81 (2001), no. 1, 77-99 crossref(new window)

2.
E. Billington and D. G. Hoffman, Decomposition of complete tripartite graphs into gregarious 4-cycles, Discrete Math. 261 (2003), no. 1-3, 87-111 crossref(new window)

3.
E. Billington, D. G. Hoffman, and C. A. Rodger, Resolvable gregarious cycle decompositions of complete equipartite graphs, Preprint

4.
N. J. Cavenagh and E. J. Billington, Decomposition of complete multipartite graphs into cycles of even length, Graphs Combin. 16 (2000), no. 1, 49-65 crossref(new window)

5.
J. R. Cho, M. J. Ferrara, R. J. Gould, and J. R. Schmitt, Difference sets generating gregarious 4-cycle decomposition of complete multipartite graphs. Preprint

6.
J. Liu, A generalization of the Oberwolfach problem and $C_{t}$-factorizations of complete equipartite graphs, J. Combin. Des. 8 (2000), no. 1, 42-49 crossref(new window)

7.
M. Sajna, Cycle decompositions. III. Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), no. 1, 27-78 crossref(new window)

8.
M. Sajna, On decomposing $K_{n}$ I into cycles of a fixed odd length, Discrete Math. 244 (2002), no. 1-3, 435-444 crossref(new window)

9.
D. Sotteau, Decomposition of $K_{m,n}$($K^{*}_{m,n}$) into cycles (circuits) of length 2$\kappa$, J. Combin. Theory Ser. B 30 (1981), no. 1, 75-81 crossref(new window)