JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LOCALLY CONVEX VECTOR TOPOLOGIES ON B(X, Y)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LOCALLY CONVEX VECTOR TOPOLOGIES ON B(X, Y)
Choi, Chang-Sun; Kim, Ju-Myung;
  PDF(new window)
 Abstract
In this paper, we introduce and study various locally convex vector topologies on the space of bounded linear operators between Banach spaces. We also apply these topologies to approximation properties.
 Keywords
bounded linear operator;locally convex vector topology;approximation property;
 Language
English
 Cited by
1.
ON SPACES OF WEAK* TO WEAK CONTINUOUS COMPACT OPERATORS,;

대한수학회보, 2013. vol.50. 1, pp.161-173 crossref(new window)
1.
ON SPACES OF WEAK*TO WEAK CONTINUOUS COMPACT OPERATORS, Bulletin of the Korean Mathematical Society, 2013, 50, 1, 161  crossref(new windwow)
2.
Approximation properties in fuzzy normed spaces, Fuzzy Sets and Systems, 2016, 282, 115  crossref(new windwow)
3.
The dual space of (L(X,Y),τp) and the p-approximation property, Journal of Functional Analysis, 2010, 259, 9, 2437  crossref(new windwow)
 References
1.
S. Banach, Theorie des operations lin'eaires, Monografje Matematyczne, Warsaw, 1932

2.
P. G. Casazza, Approximation properties, Handbook of the geometry of Banach spaces, Vol. I, 271-316, North-Holland, Amsterdam, 2001

3.
C. Choi and J. M. Kim, Weak and quasi approximation properties in Banach spaces, J. Math. Anal. Appl. 316 (2006), no. 2, 722-735 crossref(new window)

4.
N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7 Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London 1958

5.
G. Godefroy and P. D. Saphar, Three-space problems for the approximation properties, Proc. Amer. Math. Soc. 105 (1989), no. 1, 70-75 crossref(new window)

6.
A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc. 16 (1955)

7.
N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278 crossref(new window)

8.
J. M. Kim, Compactness in B(X), J. Math. Anal. Appl. 320 (2006), no. 2, 619-631 crossref(new window)

9.
J. M. Kim, Dual problems for weak and quasi approximation properties, J. Math. Anal. Appl. 321 (2006), no. 2, 569-575 crossref(new window)

10.
J. M. Kim, On relations between weak approximation properties and their inheritances to subspaces, J. Math. Anal. Appl. 324 (2006), no. 1, 721-727 crossref(new window)

11.
J. M. Kim, Compact adjoint operators and approximation properties, J. Math. Anal. Appl. 327 (2007), no. 1, 257-268 crossref(new window)

12.
R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, 183. Springer-Verlag, New York, 1998

13.
R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2002

14.
G. A. Willis, The compact approximation property does not imply the approximation property, Studia Math. 103 (1992), no. 1, 99-108