JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A
Jang, Chang-Rim; Lee, Tae-Hoon; Park, Keun;
  PDF(new window)
 Abstract
Let n be a 2-step nilpotent Lie algebra which has an inner product <, > and has an orthogonal decomposition for its center z and the orthogonal complement v of z. Then Each element z of z defines a skew symmetric linear map given by <, y> = for all x, . In this paper we characterize Jacobi fields and calculate all conjugate points of a simply connected 2-step nilpotent Lie group N with its Lie algebra n satisfying = A for all , where S is a positive definite symmetric operator on z and A is a negative definite symmetric operator on v.
 Keywords
2-step nilpotent Lie groups;Jacobi fields;conjugate points;
 Language
English
 Cited by
 References
1.
J. Berndt, F. Tricerri, and L. Vanhecke, Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lecture Notes in Mathematics, 1598. Springer-Verlag, Berlin, 1995

2.
P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric, Ann. Sci. Ecole Norm. Sup. (4) 27 (1994), no. 5, 611-660

3.
P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric. II, Trans. Amer. Math. Soc. 343 (1994), no. 2, 805-828 crossref(new window)

4.
R. Gornet and M. B. Mast, Length minimizing geodesics and the length spectrum of Riemannian two-step nilmanifolds, J. Geom. Anal. 13 (2003), no. 1, 107-143 crossref(new window)

5.
C. Jang, J. Kim, Y. Kim, and K. Park, Conjugate points on the quaternionic Heisenberg group, J. Korean Math. Soc. 40 (2003), no. 1, 61-72 crossref(new window)

6.
C. Jang and K. Park, Conjugate points on 2-step nilpotent groups, Geom. Dedicata 79 (2000), no. 1, 65-80 crossref(new window)

7.
C. Jang and P. E. Parker, Conjugate loci of pseudo-Riemannian 2-step nilpotent Lie groups with nondegenerate center, Ann. Global Anal. Geom. 28 (2005), no. 1, 1-18 crossref(new window)

8.
C. Jang, P. E. Parker, and K. Park, PseudoH-type 2-step nilpotent Lie groups, Houston J. Math. 31 (2005), no. 3, 765-786

9.
A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11 (1981), no. 2, 127-136

10.
A. Kaplan, On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), no. 1, 35-42 crossref(new window)

11.
J. Kim, Conjugate points on groups of Heisenberg type, Doctoral Thesis, University of Ulsan, 2001

12.
Y. Kim, Jacobi fields and conjugate points on modified H-type Groups, Doctoral Thesis, University of Ulsan, 2002

13.
J. Lauret, Modified H-type groups and symmetric-like Riemannian spaces, Differential Geom. Appl. 10 (1999), no. 2, 121-143 crossref(new window)

14.
G. Walschap, Cut and conjugate loci in two-step nilpotent Lie groups, J. Geom. Anal. 7 (1997), no. 2, 343-355 crossref(new window)