JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE MEAN VALUES OF DEDEKIND SUMS AND HARDY SUMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE MEAN VALUES OF DEDEKIND SUMS AND HARDY SUMS
Liu, Huaning;
  PDF(new window)
 Abstract
For a positive integer k and an arbitrary integer h, the classical Dedekind sums s(h,k) is defined by $$S(h,\;k)
 Keywords
Dedekind sums;Hardy sums;mean value;asymptotic formula;
 Language
English
 Cited by
1.
A new generalization of Hardy–Berndt sums, Proceedings - Mathematical Sciences, 2013, 123, 2, 177  crossref(new windwow)
 References
1.
T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics, No. 41. Springer-Verlag, New York-Heidelberg, 1976.

2.
B. C. Berndt, A new proof of the reciprocity theorem for Dedekind sums, Elem. Math. 29 (1974), 93-94.

3.
B. C. Berndt, Dedekind sums and a paper of G. H. Hardy, J. London Math. Soc. (2) 13 (1976), no. 1, 129-137. crossref(new window)

4.
B. C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Advances in Math. 23 (1977), no. 3, 285-316. crossref(new window)

5.
B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332-365. crossref(new window)

6.
B. C. Berndt and L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta functions, SIAM J. Math. Anal. 15 (1984), no. 1, 143-150. crossref(new window)

7.
X. Chen and W. Zhang, A sum analogous to Dedekind sums and its mean value formula, Chinese Ann. Math. Ser. A 21 (2000), no. 6, 715-722.

8.
J. B. Conrey, E. Fransen, R. Klein, and C. Scott, Mean values of Dedekind sums, J. Number Theory 56 (1996), no. 2, 214-226. crossref(new window)

9.
R. Dedekind, Erlauterungen zu der Riemannschen Fragmenten uber die Grenzfalle der elliptischen Funktionen, Gesammelte Math. Werke 1, Braunschweig, 1930, 159-173.

10.
U. Dieter, Cotangent sums, a further generalization of Dedekind sums, J. Number The- ory 18 (1984), no. 3, 289-305. crossref(new window)

11.
R. R. Hall and M. N. Huxley, Dedekind sums and continued fractions, Acta Arith. 63 (1993), no. 1, 79-90.

12.
G. H. Hardy and E. M.Wright, An Introduction to the Theory of Numbers, Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.

13.
C. Jia, On the mean value of Dedekind sums, J. Number Theory 87 (2001), no. 2, 173-188. crossref(new window)

14.
H. Liu and W. Zhang, On the even power mean of a sum analogous to Dedekind sums, Acta Math. Hungar. 106 (2005), no. 1-2, 67-81. crossref(new window)

15.
M. R. Pettet and R. Sitaramachandrarao, Three-term relations for Hardy sums, J. Num- ber Theory 25 (1987), no. 3, 328-339. crossref(new window)

16.
J. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993), no. 1, 1-24. crossref(new window)

17.
H. Rademacher and E. Grosswald, Dedekind sums, The Carus Mathematical Mono- graphs, No. 16. The Mathematical Association of America, Washington, D.C., 1972.

18.
R. Sitaramachandrarao, Dedekind and Hardy sums, Acta Arith. 48 (1987), no. 4, 325-340.

19.
H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), no. 1, 1-3.

20.
W. Zhang, On the mean values of Dedekind sums, J. Theor. Nombres Bordeaux 8 (1996), no. 2, 429-442. crossref(new window)

21.
W. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hungar. 86 (2000), no. 4, 275-289. crossref(new window)

22.
W. Zhang, A sum analogous to the Dedekind sum and its mean value formula J. Number Theory 89 (2001), no. 1, 1-13. crossref(new window)