JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HELICOIDAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HELICOIDAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
Choi, Mie-Kyung; Kim, Dong-Soo; Kim, Young-Ho;
  PDF(new window)
 Abstract
The helicoidal surfaces with pointwise 1-type or harmonic gauss map in Euclidean 3-space are studied. The notion of pointwise 1-type Gauss map is a generalization of usual sense of 1-type Gauss map. In particular, we prove that an ordinary helicoid is the only genuine helicoidal surface of polynomial kind with pointwise 1-type Gauss map of the first kind and a right cone is the only rational helicoidal surface with pointwise 1-type Gauss map of the second kind. Also, we give a characterization of rational helicoidal surface with harmonic or pointwise 1-type Gauss map.
 Keywords
helicoidal surfaces;helicoid;right cone;pointwise 1-type Gauss map;
 Language
English
 Cited by
1.
HELICOIDAL SURFACES AND THEIR GAUSS MAP IN MINKOWSKI 3-SPACE II,;;;

대한수학회보, 2009. vol.46. 3, pp.567-576 crossref(new window)
2.
SURFACES OF REVOLUTION SATISFYING ΔIIG = f(G + C),;;

대한수학회보, 2013. vol.50. 4, pp.1061-1067 crossref(new window)
3.
CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP,;;

대한수학회보, 2013. vol.50. 4, pp.1345-1356 crossref(new window)
4.
BOOST INVARIANT SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN MINKOWSKI 4-SPACE E41,;;

대한수학회보, 2014. vol.51. 6, pp.1863-1874 crossref(new window)
1.
Helicoidal surfaces satisfying $${\Delta ^{II}\mathbf{G}=f(\mathbf{G}+C)}$$ Δ II G = f ( G + C ), Journal of Geometry, 2016, 107, 3, 523  crossref(new windwow)
2.
SHAPE OPERATOR AND GAUSS MAP OF POINTWISE 1-TYPE, Journal of the Korean Mathematical Society, 2015, 52, 6, 1337  crossref(new windwow)
3.
General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E 2 4, Indian Journal of Pure and Applied Mathematics, 2015, 46, 1, 107  crossref(new windwow)
4.
ON SPACELIKE ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP, Bulletin of the Korean Mathematical Society, 2015, 52, 1, 301  crossref(new windwow)
5.
FLAT ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN E4, Honam Mathematical Journal, 2016, 38, 2, 305  crossref(new windwow)
6.
BOOST INVARIANT SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN MINKOWSKI 4-SPACE E41, Bulletin of the Korean Mathematical Society, 2014, 51, 6, 1863  crossref(new windwow)
7.
SURFACES OF REVOLUTION SATISFYING ΔIIG = f(G + C), Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1061  crossref(new windwow)
8.
CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP, Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1345  crossref(new windwow)
 References
1.
C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), no. 3, 355-359. crossref(new window)

2.
C. Baikoussis, B. Y. Chen, and L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math. 16 (1993), no. 2, 341-349. crossref(new window)

3.
C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II 2 (16) (1993), 31-42.

4.
B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.

5.
B. Y. Chen, Finite Type Submanifolds and Generalizations, Universita degli Studi di Roma "La Sapienza", Istituto Matematico "Guido Castelnuovo", Rome, 1985.

6.
B. Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. crossref(new window)

7.
B. Y. Chen and S. Ishikawa, On classification of some surfaces of revolution of finite type, Tsukuba J. Math. 17 (1993), no. 1, 287-298.

8.
B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. crossref(new window)

9.
M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753-761.

10.
M. P. do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Math. J. (2) 34 (1982), no. 3, 425-435. crossref(new window)

11.
Y. H. Kim and D. W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math. 26 (2000), no. 1, 85-96.

12.
Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205. crossref(new window)

13.
Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581. crossref(new window)

14.
W. Seaman, Helicoids of constant mean curvature and their Gauss maps, Pacific J. Math. 110 (1984), no. 2, 387-396. crossref(new window)