JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE MAXIMAL VALUE OF POLYNOMIALS WITH RESTRICTED COEFFICIENTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE MAXIMAL VALUE OF POLYNOMIALS WITH RESTRICTED COEFFICIENTS
Dubicks, Arturas; Jankauskas, Jonas;
  PDF(new window)
 Abstract
Let be a fixed complex number. In this paper, we study the quantity $S(\zeta,\;n):
 Keywords
Newman polynomial;maximum of a polynomial;root of unity;Dirichlet`s theorem;
 Language
English
 Cited by
1.
Asymptotic results for a class of triangular arrays of multivariate random variables with Bernoulli distributed components∗, Lithuanian Mathematical Journal, 2016, 56, 3, 298  crossref(new windwow)
 References
1.
S. Akiyama, H. Brunotte, A. Petho, and W. Steiner, Remarks on a conjecture on certain integer sequences, Period. Math. Hungar. 52 (2006), no. 1, 1–17. crossref(new window)

2.
P. Borwein and M.J. Mossinghoff, Newman polynomials with prescribed vanishing and integer sets with distinct subset sums, Math. Comp. 72 (2003), no. 242, 787–800. crossref(new window)

3.
D. W. Boyd, Large Newman polynomials, Diophantine analysis (Kensington, 1985), 159–170, London Math. Soc. Lecture Note Ser., 109, Cambridge Univ. Press, Cambridge, 1986.

4.
D. M. Campbell, H. R. P. Ferguson, and R. W. Forcade, Newman polynomials on jzj = 1, Indiana Univ. Math. J. 32 (1983), no. 4, 517–525. crossref(new window)

5.
L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.

6.
D. J. Newman, An $L^1$ extremal problem for polynomials, Proc. Amer. Math. Soc. 16 (1965), 1287–1290.

7.
A. M. Odlyzko and B. Poonen, Zeros of polynomials with 0, 1 coefficients, Enseign. Math. (2) 39 (1993), no. 3-4, 317–348.

8.
C. J. Smyth, Some results on Newman polynomials, Indiana Univ. Math. J. 34 (1985), no. 1, 195–200. crossref(new window)

9.
H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, .