JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME PROPERTIES OF TENSOR CENTRE OF GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME PROPERTIES OF TENSOR CENTRE OF GROUPS
Moghaddam, Mohammad Reza R.; Niroomand, Payman; Jafari, S. Hadi;
  PDF(new window)
 Abstract
Let be the tensor square of a group G. The set of all elements a in G such that $a{\otimes}g\;
 Keywords
non-abelian tensor square;tensor centre;relative central extension;capable group;
 Language
English
 Cited by
1.
Categorizing finite p-groups by the order of their non-abelian tensor squares, Journal of Algebra and Its Applications, 2016, 15, 05, 1650095  crossref(new windwow)
 References
1.
R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177–202. crossref(new window)

2.
R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, With an appendix by M. Zisman. Topology 26 (1987), no. 3, 311–335. crossref(new window)

3.
G. J. Ellis, Tensor products and q-crossed modules, J. London Math. Soc. (2) 51 (1995), no. 2, 243–258. crossref(new window)

4.
G. J. Ellis, Capability, homology, and central series of a pair of groups, J. Algebra 179 (1996), no. 1, 31–46. crossref(new window)

5.
T. Ganea, Homologie et extensions centrales de groupes, C. R. Acad. Sci. Paris Ser. A-B 266 (1968), A556–A558.

6.
N. D. Gilbert, The nonabelian tensor square of a free product of groups, Arch. Math. (Basel) 48 (1987), no. 5, 369–375. crossref(new window)

7.
C. Miller, The second homology group of a group; relations among commutators, Proc. Amer. Math. Soc. 3 (1952), 588–595. crossref(new window)

8.
S. Shahriari, On normal subgroups of capable groups, Arch. Math. (Basel) 48 (1987), no. 3, 193–198. crossref(new window)

9.
J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110. crossref(new window)