JOURNAL BROWSE
Search
Advanced SearchSearch Tips
2×2 INVERTIBLE MATRICES OVER WEAKLY STABLE RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
2×2 INVERTIBLE MATRICES OVER WEAKLY STABLE RINGS
Chen, Huanyin;
  PDF(new window)
 Abstract
A ring R is a weakly stable ring provided that aR + bR
 Keywords
weakly stable ring;invertible matrix;factorization;
 Language
English
 Cited by
1.
ON QUASI-STABLE EXCHANGE IDEALS,;

대한수학회지, 2010. vol.47. 1, pp.1-15 crossref(new window)
2.
PIERCE STALKS OF EXCHANGE RINGS,;

대한수학회지, 2010. vol.47. 4, pp.819-830 crossref(new window)
1.
PIERCE STALKS OF EXCHANGE RINGS, Journal of the Korean Mathematical Society, 2010, 47, 4, 819  crossref(new windwow)
 References
1.
P. Ara, The exchange property for purely infinite simple rings, Proc. Amer. Math. Soc. 132 (2004), no. 9, 2543–2547. crossref(new window)

2.
H. Chen, Comparability of modules over regular rings, Comm. Algebra 25 (1997), no. 11, 3531–3543. crossref(new window)

3.
H. Chen, Exchange rings in which all regular elements are one-sided unit-regular, Czechoslovak Math. J. 58 (2008), no. 4, 899–910. crossref(new window)

4.
H. Chen and M. Chen, On products of three triangular matrices over associative rings, Linear Algebra Appl. 387 (2004), 297–311. crossref(new window)

5.
H. Chen and M. Chen, On strongly π-regular ideals, J. Pure Appl. Algebra 195 (2005), no. 1, 21–32. crossref(new window)

6.
G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc. 216 (1976), 81–90. crossref(new window)

7.
K. R. Goodearl, von Neumann Regular Rings, Second edition. Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991.

8.
T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Appl. 3 (2004), no. 3, 301–343. crossref(new window)

9.
Q. Li and W. Tong, Weak cancellation of modules and weakly stable range conditions for exchange rings, Acta Math. Sinica (Chin. Ser.) 45 (2002), no. 6, 1121–1126.

10.
D. Lu, Q. Li, and W. Tong, Comparability, stability, and completions of ideals, Comm. Algebra 32 (2004), no. 7, 2617–2634. crossref(new window)

11.
K. R. Nagarajan, M. D. Devasahayam, and T. Soundararajan, Products of three triangular matrices, Linear Algebra Appl. 292 (1999), no. 1-3, 61–71. crossref(new window)

12.
K. R. Nagarajan, M. D. Devasahayam, and T. Soundararajan, Products of three triangular matrices over commutative rings, Linear Algebra Appl. 348 (2002), 1–6. crossref(new window)

13.
A. A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.

14.
L. N. Vaserstein and E. Wheland, Commutators and companion matrices over rings of stable rank 1, Linear Algebra Appl. 142 (1990), 263–277. crossref(new window)

15.
J. Wei, Exchange rings with weakly stable range one, Vietnam J. Math. 32 (2004), no. 4, 441–449.

16.
J. Wei, Unit-regularity and stable range conditions, Comm. Algebra 33 (2005), no. 6, 1937–1946. crossref(new window)