JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ZERO-DIVISOR GRAPHS WITH RESPECT TO PRIMAL AND WEAKLY PRIMAL IDEALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ZERO-DIVISOR GRAPHS WITH RESPECT TO PRIMAL AND WEAKLY PRIMAL IDEALS
Atani, Shahabaddin Ebrahimi; Darani, Ahamd Yousefian;
  PDF(new window)
 Abstract
We consider zero-divisor graphs with respect to primal, nonprimal, weakly prime and weakly primal ideals of a commutative ring R with non-zero identity. We investigate the interplay between the ringtheoretic properties of R and the graph-theoretic properties of for some ideal I of R. Also we show that the zero-divisor graph with respect to primal ideals commutes by localization.
 Keywords
zero-divisor graph;primal;weakly primal;
 Language
English
 Cited by
1.
THE IDENTITY-SUMMAND GRAPH OF COMMUTATIVE SEMIRINGS,;;;

대한수학회지, 2014. vol.51. 1, pp.189-202 crossref(new window)
2.
TOTAL GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO IDENTITY-SUMMAND ELEMENTS,;;;

대한수학회지, 2014. vol.51. 3, pp.593-607 crossref(new window)
1.
An ideal based zero-divisor graph of a commutative semiring, Glasnik Matematicki, 2009, 44, 1, 141  crossref(new windwow)
2.
ZERO DIVISOR GRAPHS OF LATTICES AND PRIMAL IDEALS, Asian-European Journal of Mathematics, 2012, 05, 03, 1250037  crossref(new windwow)
3.
TOTAL GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO IDENTITY-SUMMAND ELEMENTS, Journal of the Korean Mathematical Society, 2014, 51, 3, 593  crossref(new windwow)
4.
THE IDENTITY-SUMMAND GRAPH OF COMMUTATIVE SEMIRINGS, Journal of the Korean Mathematical Society, 2014, 51, 1, 189  crossref(new windwow)
 References
1.
D. F. Anderson, R. Levy, and J. Shapirob, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), no. 3, 221–241. crossref(new window)

2.
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434–447. crossref(new window)

3.
D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831–840.

4.
I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226. crossref(new window)

5.
L. Dancheng and W. Tongsuo, On ideal-based zero-divisor graphs, Preprint 2006.

6.
S. Ebrahimi Atani and A. Yousefian Darani, Some remarks on primal submodules, Sarajevo Journal of Mathematics 4 (2008), no. 17, 181–190.

7.
S. Ebrahimi Atani and A. Yousefian Darani, On weakly primal ideals (I), Demonstratio Math. 40 (2007), no. 1, 23–32.

8.
L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1–6. crossref(new window)

9.
J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117. Marcel Dekker, Inc., New York, 1988.

10.
T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174–193. crossref(new window)

11.
H. R. Maimani, M. R. Pournaki, and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (2006), no. 3, 923–929. crossref(new window)

12.
S. B. Mulay, Rings having zero-divisor graphs of small diameter or large girth, Bull. Austral. Math. Soc. 72 (2005), no. 3, 481–490. crossref(new window)

13.
S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), no. 9, 4425–4443. crossref(new window)

14.
R. Y. Sharp, Steps in Commutative Algebra, London Mathematical Society Student Texts, 19. Cambridge University Press, Cambridge, 1990.