JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED FOURIER-WIENER FUNCTION SPACE TRANSFORMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED FOURIER-WIENER FUNCTION SPACE TRANSFORMS
Chang, Seung-Jun; Chung, Hyun-Soo;
  PDF(new window)
 Abstract
In this paper, we define generalized Fourier-Hermite functionals on a function space to obtain a complete orthonormal set in where is a very general function space. We then proceed to give a necessary and sufficient condition that a functional F in has a generalized Fourier-Wiener function space transform also belonging to .
 Keywords
generalized Brownian motion process;generalized Hermite function;generalized Fourier-Hermite coefficient;generalized Fourier-Wiener function space transform;
 Language
English
 Cited by
1.
INTEGRAL TRANSFORMS AND INVERSE INTEGRAL TRANSFORMS WITH RELATED TOPICS ON FUNCTION SPACE I,;;

한국수학교육학회지시리즈B:순수및응용수학, 2009. vol.16. 4, pp.369-382
2.
SERIES EXPANSIONS OF THE ANALYTIC FEYNMAN INTEGRAL FOR THE FOURIER-TYPE FUNCTIONAL,;;;

한국수학교육학회지시리즈B:순수및응용수학, 2012. vol.19. 2, pp.87-102 crossref(new window)
3.
REFLECTION PRINCIPLES FOR GENERAL WIENER FUNCTION SPACES,;;

대한수학회지, 2013. vol.50. 3, pp.607-625 crossref(new window)
1.
Some basic relationships among transforms, convolution products, first variations and inverse transforms, Open Mathematics, 2013, 11, 3  crossref(new windwow)
2.
Self-adjoint oscillator operator from a modified factorization, Physics Letters A, 2011, 375, 22, 2145  crossref(new windwow)
3.
Relationships Involving Transforms and Convolutions Via the Translation Theorem, Stochastic Analysis and Applications, 2014, 32, 2, 348  crossref(new windwow)
4.
REFLECTION PRINCIPLES FOR GENERAL WIENER FUNCTION SPACES, Journal of the Korean Mathematical Society, 2013, 50, 3, 607  crossref(new windwow)
5.
SERIES EXPANSIONS OF THE ANALYTIC FEYNMAN INTEGRAL FOR THE FOURIER-TYPE FUNCTIONAL, The Pure and Applied Mathematics, 2012, 19, 2, 87  crossref(new windwow)
6.
Generalized conditional transform with respect to the Gaussian process on function space, Integral Transforms and Special Functions, 2015, 26, 12, 925  crossref(new windwow)
 References
1.
R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 485–488. crossref(new window)

2.
R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489–507. crossref(new window)

3.
R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to $L_2$ over the space Ć, Duke Math. J. 14 (1947), 99–107. crossref(new window)

4.
R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math. 48 (1947), 385–392. crossref(new window)

5.
R. H. Cameron and D. A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), no. 1, 1–30. crossref(new window)

6.
K. S. Chang, B. S. Kim, and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener space, Numer. Funct. Anal. Optim. 21 (2000), no. 1-2, 97–105. crossref(new window)

7.
S. J. Chang and D. M. Chung, Conditional function space integrals with applications, Rocky Mountain J. Math. 26 (1996), no. 1, 37–62. crossref(new window)

8.
S. J. Chang, J. G. Choi, and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2925–2948. crossref(new window)

9.
S. J. Chang and D. L. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375–393. crossref(new window)

10.
B. S. Kim and D. Skoug, Integral transforms of functionals in $L_{2}$($C_{0}$[0, T]), Rocky Mountain J. Math. 33 (2003), no. 4, 1379–1393. crossref(new window)

11.
Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), no. 2, 153–164. crossref(new window)

12.
Y. J. Lee, Unitary operators on the space of $L^2$-functions over abstract Wiener spaces, Soochow J. Math. 13 (1987), no. 2, 165–174.

13.
D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), no. 3, 1147–1175. crossref(new window)

14.
E. Nelson, Dynamical Theories of Brownian Motion (2nd edition), Math. Notes, Princeton University Press, Princeton, 1967.

15.
J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.

16.
J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15 (1971), 37–46.