JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE VOLUMES OF CANONICAL CUSPS OF COMPLEX HYPERBOLIC MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE VOLUMES OF CANONICAL CUSPS OF COMPLEX HYPERBOLIC MANIFOLDS
Kim, In-Kang; Kim, Joon-Hyung;
  PDF(new window)
 Abstract
We first introduce a complex hyperbolic space and a complex hyperbolic manifold. After defining the canonical horoball and the canonical cusp on the complex hyperbolic manifold, we estimate the volumes of canonical cusps of complex hyperbolic manifolds. Finally, we deal with cusped, complex hyperbolic 2-manifolds, and in particular, the ones with only one cusp.
 Keywords
complex hyperbolic manifold;canonical cusp;Heisenberg isometry;
 Language
English
 Cited by
1.
ON THE CANONICAL CUSPS IN COMPLEX HYPERBOLIC SURFACES,;

대한수학회지, 2012. vol.49. 2, pp.343-356 crossref(new window)
1.
Counting and equidistribution in Heisenberg groups, Mathematische Annalen, 2016  crossref(new windwow)
2.
ON THE CANONICAL CUSPS IN COMPLEX HYPERBOLIC SURFACES, Journal of the Korean Mathematical Society, 2012, 49, 2, 343  crossref(new windwow)
3.
Lower bound for the volumes of quaternionic hyperbolic orbifolds, Complex Variables and Elliptic Equations, 2016, 1  crossref(new windwow)
4.
Balls in complex hyperbolic manifolds, Science China Mathematics, 2014, 57, 4, 767  crossref(new windwow)
 References
1.
W. M. Goldman, Complex Hyperbolic Geometry, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1999

2.
S. Hersonsky and F. Paulin, On the volumes of complex hyperbolic manifolds, Duke Math. J. 84 (1996), no. 3, 719–737 crossref(new window)

3.
J.-M. Hwang, On the volumes of complex hyperbolic manifolds with cusps, Internat. J. Math. 15 (2004), no. 6, 567–572

4.
B. Maskit, Kleinian Groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 287. Springer-Verlag, Berlin, 1988

5.
J. R. Parker, On the volumes of cusped, complex hyperbolic manifolds and orbifolds, Duke Math. J. 94 (1998), no. 3, 433–464 crossref(new window)

6.
W. Thurston, The geometry and topology of 3-manifolds, preprint, 1991