WEAK AND STRONG CONVERGENCE THEOREMS FOR AN ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTION AND A MIXED EQUILIBRIUM PROBLEM

- Journal title : Journal of the Korean Mathematical Society
- Volume 46, Issue 3, 2009, pp.561-576
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2009.46.3.561

Title & Authors

WEAK AND STRONG CONVERGENCE THEOREMS FOR AN ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTION AND A MIXED EQUILIBRIUM PROBLEM

Yao, Yong-Hong; Zhou, Haiyun; Liou, Yeong-Cheng;

Yao, Yong-Hong; Zhou, Haiyun; Liou, Yeong-Cheng;

Abstract

We introduce two iterative algorithms for finding a common element of the set of fixed points of an asymptotically k-strict pseudo-contraction and the set of solutions of a mixed equilibrium problem in a Hilbert space. We obtain some weak and strong convergence theorems by using the proposed iterative algorithms. Our results extend and improve the corresponding results of Tada and Takahashi [16] and Kim and Xu [8, 9].

Keywords

mixed equilibrium problems;fixed point problems;iterative algorithm;asymptotically k-strict pseudo-contraction;Hilbert space;

Language

English

Cited by

1.

2.

3.

4.

References

1.

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123–145

2.

O. Chadli, I. V. Konnov, and J. C. Yao, Descent methods for equilibrium problems in a Banach space, Comput. Math. Appl. 48 (2004), no. 3-4, 609–616

3.

O. Chadli, S. Schaible, and J. C. Yao, Regularized equilibrium problems with application to noncoercive hemivariational inequalities, J. Optim. Theory Appl. 121 (2004), no. 3, 571–596

4.

O. Chadli, N. C. Wong, and J. C. Yao, Equilibrium problems with applications to eigenvalue problems, J. Optim. Theory Appl. 117 (2003), no. 2, 245–266

5.

P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117–136

6.

X. P. Ding, Y. C. Lin, and J. C. Yao, Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems, Appl. Math. Mech. (English Ed.) 27 (2006), no. 9, 1157–1164

7.

S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Programming 78 (1997), no. 1, Ser. A, 29–41

8.

T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006), no. 5, 1140–1152

9.

T. H. Kim and H. K. Xu, Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Analysis: Theory, Methods & Applications 68 (2008), no. 9, 2828–2836

10.

I. V. Konnov, S. Schaible, and J. C. Yao, Combined relaxation method for mixed equilibrium problems, J. Optim. Theory Appl. 126 (2005), no. 2, 309–322

11.

C. Matinez-Yanes and H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), no. 11, 2400–2411

12.

M. A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006), no. 3, 529–566

13.

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597

14.

S. Plubtieng and R. Punpaeng , A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007), no. 1, 455–469

15.

A. Tada and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, Nonlinear analysis and convex analysis, 609–617, Yokohama Publ., Yokohama, 2007

16.

A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. Optim. Theory Appl. 133 (2007), no. 3, 359–370

17.

S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506–515

18.

Y. Yao, Y. C. Liou, and J. C. Yao, Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory Appl. 2007, Art. ID 64363, 12 pp

19.

Y. Yao, Y. C. Liou, and J. C. Yao, A new hybrid iterative algorithm for fixed point problems, variational inequality problems and mixed equilibrium problems, Fixed Point Theory and Applications 2008 (2008), Article ID 417089, 15 pages

20.

Y. Yao, M. A. Noor, and Y. C. Liou, On iterative methods for equilibrium problems, Nonlinear Anal. 70 (2009), no. 1, 497–509

21.

L. C. Zeng and J. C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems , J. Comput. Appl. Math. 214 (2008), no. 1, 186–201

22.

L. C. Zeng, S. Y. Wu, and J. C. Yao, Generalized KKM theorem with applications to generalized minimax inequalities and generalized equilibrium problems, Taiwanese J. Math. 10 (2006), no. 6, 1497–1514