SEMICONTINUOUS PLANAR TOTAL PREORDERS ON NON-SEPARABLE METRIC SPACES

- Journal title : Journal of the Korean Mathematical Society
- Volume 46, Issue 4, 2009, pp.701-711
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2009.46.4.701

Title & Authors

SEMICONTINUOUS PLANAR TOTAL PREORDERS ON NON-SEPARABLE METRIC SPACES

Campioon, Marla Jesuus; Candeal, Juan Carlos; Indurain, Esteban;

Campioon, Marla Jesuus; Candeal, Juan Carlos; Indurain, Esteban;

Abstract

We prove that every non-separable connected metric space can be endowed with a total preorder that is order-isomorphic to a nonrepresentable subset of the lexicographic plane and semicontinuous with respect to the metric topology.

Keywords

real-valued functions;metric spaces;semicontinuous total preorders;representability;

Language

English

Cited by

References

1.

C. D. Aliprantis and K. C. Border, Infinite-Dimensional Analysis: A Hitchhiker's Guide, Second edition, Springer-Verlag, Berlin, 1999

2.

C. D. Aliprantis, D. J. Brown, and O. Burkinshaw, Existence and Optimality of Competitive Equilibria, Springer-Verlag, Berlin, 1990

3.

A. F. Beardon, Totally ordered subsets of Euclidean space, J. Math. Econom. 23 (1994), no. 4, 391–393

4.

A. F. Beardon, Utility theory and continuous monotonic functions, Econom. Theory 4 (1994), no. 4, 531–538

5.

A. F. Beardon, J. C. Candeal, G. Herden, E. Indur´ain, and G. B. Mehta, The nonexistence of a utility function and the structure of non-representable preference relations, J. Math. Econom. 37 (2002), no. 1, 17–38

6.

A. F. Beardon, J. C. Candeal, G. Herden, E. Indurain, and G. B. Mehta, Lexicographic decomposition of chains and the concept of a planar chain, J. Math. Econom. 37 (2002), no. 2, 95–104

7.

T. Bewley, Existence of equilibria in economies with infinitely many commodities, J. Econom. Theory 4 (1972), no. 3, 514–540

8.

G. Bosi, J. C. Candeal, and E. Indurain, Continuous representability of homothetic preferences by means of homogeneous utility functions, J. Math. Econom. 33 (2000), no. 3, 291–298

9.

G. Bosi and G. Herden, On the structure of completely useful topologies, Appl. Gen. Topol. 3 (2002), no. 2, 145–167

10.

G. Bosi and G. Herden, On a strong continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller, Order 22 (2005), no. 4, 329–342

11.

G. Bosi and G. Herden, On a possible continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller, Order 23 (2006), no. 4, 271–296

12.

D. S. Bridges and G. B. Mehta, Representations of Preferences Orderings, Lecture Notes in Economics and Mathematical Systems, 422. Springer-Verlag, Berlin, 1995

13.

M. J. Campion, J. C. Candeal, A. S. Granero, and E. Indurain, Ordinal representability in Banach spaces, Methods in Banach space theory, 183–196, London Math. Soc. Lecture Note Ser., 337, Cambridge Univ. Press, Cambridge, 2006

14.

M. J. Campion, J. C. Candeal, and E. Indurain, On Yi's extension property for totally preordered topological spaces, J. Korean Math. Soc. 43 (2006), no. 1, 159–181

15.

M. J. Campion, J. C. Candeal, and E. Indurain, The existence of utility functions for weakly continuous preferences on a Banach space, Math. Social Sci. 51 (2006), no. 2, 227–237

16.

J. C. Candeal, C. Herves, and E. Indurain, Some results on representation and extension of preferences, J. Math. Econom. 29 (1998), no. 1, 75–81

17.

J. C. Candeal and E. Indurain, Utility functions on chains, J. Math. Econom. 22 (1993), no. 2, 161–168

18.

J. C. Candeal and E. Indurain, Lexicographic behaviour of chains, Arch. Math. (Basel) 72 (1999), no. 2, 145–152

19.

J. C. Candeal, E. Indurain, and G. B. Mehta, Further remarks on totally ordered representable subsets of Euclidean space, J. Math. Econom. 25 (1996), no. 4, 381–390

20.

J. C. Candeal, E. Indurain, and G. B. Mehta, Order preserving functions on ordered topological vector spaces, Bull. Austral. Math. Soc. 60 (1999), no. 1, 55–65

21.

R. Engelking, Outline of General Topology, Translated from the Polish by K. Sieklucki North-Holland Publishing Co., Amsterdam; PWN-Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York 1968

22.

M. Estevez and C. Herves, On the existence of continuous preference orderings without utility representations, J. Math. Econom. 24 (1995), no. 4, 305–309

24.

25.

G. Herden and A. Pallack, Useful topologies and separable systems, Appl. Gen. Topol. 1 (2000), no. 1, 61–82

26.

R. Isler, Semicontinuous utility functions in topological spaces, Riv. Mat. Sci. Econom. Social. 20 (1997), no. 1, 111–116

27.

A. Mas-Colell, Papers presented at the Colloquium on Mathematical Economics, J. Math. Econom. 2 (1975), no. 2, 263–295

28.

A. Mas-Colell and W. R. Zame, Equilibrium theory in infinite-dimensional spaces, Handbook of mathematical economics, Vol. IV, 1835–1898, Handbooks in Econom., 1, North-Holland, Amsterdam, 1991

29.

P. K. Monteiro, Some results on the existence of utility functions on path connected space, J. Math. Econom. 16 (1987), no. 2, 147–156

30.

A. J. Ostaszewski, On the descriptive set theory of the lexicographic square, Fund. Math. 87 (1975), no. 3, 261–281

31.

T. Rader, The existence of a utility function to represent preferences, Review of Economic Studies 30 (1963), 229–232

32.

S. Romaguera and M. Sanchis, Applications of utility functions defined on quasi-metric spaces, J. Math. Anal. Appl. 283 (2003), no. 1, 219–235

33.

L. A. Steen and J. A. Seebach Jr., Counterexamples in Topology, Dover, New York, 1978